Modal energy analysis (MODENA) is an energy-based method recently proposed to estimate the dynamic response of a coupled structure/acoustic cavity system. The accuracy of MODENA is affected by the coupling strength between structural and acoustic modes. A dimensionless coupling quotient which is equal to the ratio of the gyroscopic coupling coefficient and the critical coefficient at modal frequencies is defined to determine the coupling strength in MODENA. The coupling strength of the system is classified as weak, moderate, or strong, according to the coupling quotient with a proposed criterion. When computing the modal input power in MODENA, the mobility of the uncoupled mode can be used if the modes are weakly coupled, but the mobility of the coupled mode should be adopted to obtain accurate results if many modes are moderately coupled. The effectiveness of the proposed criterion is validated via a numerical example where a plate is coupled with an acoustic cavity. Results show that many low-order structural and acoustic modes are moderately coupled while almost all high-order modes are weakly coupled. Errors of the energy responses appear in a low-frequency band, but accurate results are acquired in a mid- to high-frequency band when the mobility of uncoupled mode is used.

References

1.
Lyon
,
R. H.
, and
Dejong
,
R. G.
,
1995
,
Theory and Application of Statistical Energy Analysis
,
Butterworth-Heinemann
,
London
.
2.
Maxit
,
L.
, and
Guyader
,
J. L.
,
2003
, “
Extension of the SEA Model to Subsystems With Non-Uniform Modal Energy Distribution
,”
J. Sound Vib.
,
265
(
2
), pp.
337
358
.
3.
Totaro
,
N.
, and
Guyader
,
J. L.
,
2013
, “
Modal Energy Analysis
,”
J. Sound Vib.
,
332
(
16
), pp.
3735
3749
.
4.
Lyon
,
R. H.
, and
Maidanik
,
G.
,
1962
, “
Power Flow Between Linearly Coupled Oscillators
,”
J. Acoust. Soc. Am.
,
34
(
5
), pp.
623
639
.
5.
Newland
,
D. E.
,
1966
, “
Calculation of Power Flow Between Coupled Oscillators
,”
J. Sound Vib.
,
3
(
3
), pp.
262
276
.
6.
Le Bot
,
A.
, and
Cotoni
,
V.
,
2010
, “
Validity Diagrams of Statistical Energy Analysis
,”
J. Sound Vib.
,
329
(
2
), pp.
221
235
.
7.
Ji
,
L.
, and
Huang
,
Z.
,
2014
, “
A Simple Statistical Energy Analysis Technique on Modeling Continuous Coupling Interfaces
,”
ASME J. Vib. Acoust.
,
136
(1), p.
014501
.
8.
Díaz-Cereceda
,
C.
,
Poblet-Puig
,
J.
, and
Rodríguez-Ferran
,
A.
,
2013
, “
Numerical Estimation of Coupling Loss Factors in Building Acoustics
,”
J. Sound Vib.
,
332
(
21
), pp.
5433
5450
.
9.
D'Amico
,
R.
,
Koo
,
K.
, and
Huybrechs
,
D.
,
2013
, “
On the Use of the Residue Theorem for the Efficient Evaluation of Band-Averaged Input Power Into Linear Second-Order Dynamic Systems
,”
J. Sound Vib.
,
332
(
26
), pp.
7205
7225
.
10.
Keane
,
A. J.
, and
Prince
,
W. G.
,
1987
, “
Statistical Energy Analysis of Strongly Coupled Systems
,”
J. Sound Vib.
,
117
(
2
), pp.
363
386
.
11.
Fahy
,
F.
, and
Deyuan
,
Y.
,
1987
, “
Power Flow Between Non-Conservatively Coupled Oscillators
,”
J. Sound Vib.
,
114
(
1
), pp.
1
11
.
12.
Heron
,
K. H.
,
1994
, “
Advanced Statistical Energy Analysis
,”
Philos. Trans. R. Soc. London A
,
346
(
1681
), pp.
501
510
.
13.
Lai
,
M. L.
, and
Soom
,
A.
,
1990
, “
Prediction of Transient Vibration Envelopes Using Statistical Energy Analysis Techniques
,”
ASME J. Vib. Acoust.
,
112
(
1
), pp.
127
137
.
14.
Guasch
,
O.
, and
García
,
C.
,
2014
, “
Numerical Local Time Stepping Solutions for Transient Statistical Energy Analysis
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
064502
.
15.
Chappell
,
D. J.
,
Löchel
,
D.
, and
Søndergaard
,
N.
,
2014
, “
Dynamical Energy Analysis on Mesh Grids: A New Tool for Describing the Vibro-Acoustic Response of Complex Mechanical Structures
,”
Wave Motion
,
51
(
4
), pp.
589
597
.
16.
Totaro
,
N.
, and
Guyader
,
J. L.
,
2012
, “
Extension of the Statistical Modal Energy Distribution Analysis for Estimating Energy Density in Coupled Subsystems
,”
J. Sound Vib.
,
331
(
13
), pp.
3114
3129
.
17.
Totaro
,
N.
, and
Guyader
,
J. L.
,
2013
, “
MODal ENergy Analysis
,”
J. Sound Vib.
,
332
(16), pp.
3735
3749
.
18.
Smith
,
P. W.
,
1979
, “
Statistical Models of Coupled Dynamical Systems and the Transition From Weak to Strong Coupling
,”
J. Acoust. Soc. Am.
,
65
(
3
), pp.
695
698
.
19.
Wang
,
X.
,
2016
, “
Coupling Loss Factor of Linear Vibration Energy Harvesting Systems in a Framework of Statistical Energy Analysis
,”
J. Sound Vib.
,
362
(1), pp.
125
141
.
20.
Wang
,
X.
,
Liang
,
X.
, and
Shu
,
G.
,
2016
, “
Coupling Analysis of Linear Vibration Energy Harvesting Systems
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
428
444
.
21.
Maxit
,
L.
, and
Guyader
,
J. L.
,
2001
, “
Estimation of SEA Coupling Loss Factors Using a Dual Formulation and FEM Modal Information, Part I: Theory
,”
J. Sound Vib.
,
239
(
5
), pp.
907
930
.
22.
Scharton
,
T. D.
, and
Lyon
,
R. H.
,
1968
, “
Power Flow and Energy Sharing in Random Vibration
,”
J. Acoust. Soc. Am.
,
43
(
6
), pp.
1332
1343
.
23.
Maxit
,
L.
,
2013
, “
Analysis of the Modal Energy Distribution of an Excited Vibrating Panel Coupled With a Heavy Fluid Cavity by a Dual Modal Formulation
,”
J. Sound Vib.
,
332
(
25
), pp.
6703
6724
.
You do not currently have access to this content.