Abstract

The present paper addresses the multi-objective aerodynamic shape optimization of the two-dimensional LS-89 turbine cascade. The objective is to minimize the entropy generation at subsonic and transonic flow conditions while maintaining the same flow turning. Nineteen design variables are used to parametrize the geometry. The optimization problem is used to compare two major classes of optimization algorithms and at the same time deduce if this problem has multiple local solutions or one global optimum. A first optimization strategy uses a gradient-based Sequential Quadratic Programming (SQP) algorithm. This SQP algorithm allows to directly handle the non-linear constraints during the optimization process. An adjoint solver is used for computing the sensitivities of the flow quantities with respect to the design variables, such that the additional gradient computational cost is nearly independent of the number of design variables. In addition, the same optimization problem is performed with a gradient-free-metamodel assisted-evolutionary algorithm. A comparison of the two Pareto-fronts obtained with both methods shows that the gradient-based approach allows to find the same optimum at a reduced computational cost. Moreover, the results suggest that the considered optimization problem is uni-modal. In other terms, it is characterized by a single optimal solution.

References

1.
Verstraete
,
T.
,
Aissa
,
M.
, and
Mueller
,
L.
,
2018
,
Multidisciplinary Optimization of Turbomachinery Components Using Differential Evolution
,
Von Karman Institute for Fluid Dynamics
,
Sint-Genesius-Rode, Belgium
.
2.
Conn
,
A. R.
,
Scheinberg
,
K.
, and
Vicente
,
L. N.
,
2009
,
Introduction to Derivative-Free Optimization
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
3.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
230
260
.
4.
Müller
,
L.
,
2019
, “
Adjoint-Based Optimization of Turbomachinery With Applications to Axial and Radial Turbines
,” PhD Thesis,
Université libre de Bruxelles, Ecole polytechnique de Bruxelles – Mécanicien
,
Bruxelles
.
5.
Chatel
,
A.
,
Verstraete
,
T.
, and
Coussement
,
G.
,
2020
, “
Multipoint Optimization of An Axial Turbine Cascade Using a Hybrid Algorithm
,”
ASME J. Turbomach.
, pp.
1
15
.
6.
Châtel
,
A.
,
Verstraete
,
T.
,
Coussement
,
G.
, and
Mueller
,
L.
,
2018
, “
Single-Point Optimization of the LS89 Turbine Cascade Using a Hybrid Algorithm
,”
American Society of Mechanical Engineers
,
New York
.
7.
Hottois
,
R.
,
2020
, “
Implementation of a Gradient-Based Optimization Algorithm for Turbomachinery Applications, Using Sequential Quadratic Programming
,” Master’s thesis,
Université de Mons
,
Belgium
.
8.
Verstraete
,
T.
,
2010
, “
Cado: A Computer Aided Design and Optimization Tool for Turbomachinery Applications
”.
9.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer
,
New York, NY
.
10.
Forsgren
,
A.
,
Gill
,
P. E.
, and
Wong
,
E.
,
2015
, “
Primal and Dual Active-set Methods for Convex Quadratic Programming
,”
Math. Program.
,
159
(
1–2
), pp.
469
508
.
11.
Boggs
,
P.
, and
Tolle
,
J.
,
1995
, “
Sequential Quadratic Programming
,”
Acta Numerica
,
4
(
Jan
), pp.
1
51
.
12.
Gass
,
S. I.
, and
Fu
,
M. C.
, eds.,
2013
,
Karush-Kuhn-Tucker (KKT) Conditions
,
Springer US
,
Boston, MA
, pp.
833
834
.
13.
Powell
,
M. J. D.
,
1978
, “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,”
Lecture Notes in Mathematics
,
Springer
Berlin
, pp.
144
157
.
14.
Parkinson
,
A. R.
,
Balling
,
R.
, and
Hedengren
,
J. D.
,
2013
,
Optimization Methods for Engineering Design
,
Brigham Young University
,
Provo, UT
.
15.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
,
439
, pp.
5
21
.
16.
Martins
,
J. R. R. A.
,
Sturdza
,
P.
, and
Alonso
,
J. J.
,
2003
, “
The Complex-Step Derivative Approximation
,”
ACM Trans. Math. Softw.
,
29
(
3
), pp.
245
262
.
17.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; Heat Transfer; Electric Power; Industrial and Cogeneration; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation
, Vol.
2
,
IGTI Scholar Award, American Society of Mechanical Engineers
,
New York
.
18.
Xu
,
L.
, and
Denton
,
J. D.
,
1988
, “
The Base Pressure and Loss of a Family of Four Turbine Blades
,”
ASME J. Turbomach.
,
110
(
1
), pp.
9
17
.
19.
Storn
,
R.
, and
Price
,
K.
,
1995
, “
Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
23
, pp.
341
359
.
20.
Joly
,
M. M.
,
Verstraete
,
T.
, and
Paniagua
,
G.
,
2013
, “
Differential Evolution Based Soft Optimization to Attenuate Vane–rotor Shock Interaction in High-pressure Turbines
,”
Appl. Soft. Comput.
,
13
(
4
), pp.
1882
1891
.
21.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
22.
Châtel
,
A.
,
2021
, “Development of Hybrid Optimization Methods with Applications to Turbomachinery Components,”
University of Mons
,
Mons, Belgium
.
23.
Vasilopoulos
,
I.
,
Asouti
,
V.
,
Giannakoglou
,
K.
, and
Meyer
,
M.
,
2021
, “
Gradient-Based Pareto Front Approximation Applied to Turbomachinery Shape Optimization
,”
Eng. Comput.
You do not currently have access to this content.