Abstract

The effects of nitrogen on friction and wear properties of Zr-based bulk metallic glasses were investigated experimentally. Bar like metallic glasses were prepared by copper mold suction casting method. X-ray diffraction (XRD) was used to characterize the structure of samples, which proved their amorphous structure. The surface properties of the samples were studied with a microhardness tester and a friction and wear tester. The wear surfaces of the sample were analyzed by scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). The results show that the introduction of nitrogen improves the hardness and wear resistance of Zr-based metallic glass. Compared with the non-N-doped Zr-based metallic glass, the N-doped Zr-based metallic glasses have higher hardness and lower wear-rate. In particular, the sample with 1.5% nitrogen doping has the largest hardness (578.58 hv) and the lowest wear-rate (1.04 × 10−3 mm3/N/m). The wear types of N-doped Zr-based amorphous on GCr15 are mainly abrasive wear and adhesive wear.

References

1.
Inoue
,
A.
,
2000
, “
Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys
,”
Acta Mater.
,
48
(
1
), pp.
279
306
.
2.
Schroers
,
J.
,
2010
, “
Processing of Bulk Metallic Glass
,”
Adv. Mater.
,
22
(
14
), pp.
1566
1597
.
3.
Johnson
,
W. L.
,
1999
, “
Bulk Glass-Forming Metallic Alloys: Science and Technology
,”
MRS Bull.
,
24
(
10
), pp.
42
56
.
4.
Greer
,
A. L.
,
2009
, “
Metallic Glasses… on the Threshold
,”
Mater. Today
,
12
(
1–2
), pp.
14
22
.
5.
Telford
,
M.
,
2004
, “
The Case for Bulk Metallic Glass
,”
Mater. Today
,
7
(
3
), pp.
36
43
.
6.
Chakravarty
,
S.
,
Gupta
,
M.
,
Gupta
,
A.
,
Rajagopalan
,
S.
,
Balamurugan
,
A. K.
,
Tyagi
,
A. K.
,
Deshpande
,
U. P.
,
Horisberger
,
M.
, and
Gutberlet
,
T.
,
2009
, “
Fe and N Self-Diffusion in Amorphous FeN: A SIMS and Neutron Reflectivity Study
,”
Acta Mater.
,
57
(
4
), pp.
1263
1271
.
7.
Liu
,
C. T.
,
Chisholm
,
M. F.
, and
Miller
,
M. K.
,
2002
, “
Oxygen Impurity and Microalloying Effect in a Zr-Based Bulk Metallic Glass Alloy
,”
Intermetallics
,
10
(
11–12
), pp.
1105
1112
.
8.
Lu
,
Z. P.
,
Liu
,
C. T.
, and
Porter
,
W. D.
,
2003
, “
Role of Yttrium in Glass Formation of Fe-Based Bulk Metallic Glasses
,”
Appl. Phys. Lett.
,
83
(
13
), pp.
2581
2583
.
9.
Heinrich
,
J.
,
Busch
,
R.
,
Müller
,
F.
,
Grandthyll
,
S.
, and
Hüfner
,
S.
,
2012
, “
Role of Aluminum as an Oxygen-Scavenger in Zirconium Based Bulk Metallic Glasses
,”
Appl. Phys. Lett.
,
100
(
7
), p.
071909
.
10.
Wang
,
Y. X.
,
Yang
,
H.
,
Lim
,
G.
, and
Li
,
Y.
,
2010
, “
Glass Formation Enhanced by Oxygen in Binary Zr–Cu System
,”
Scr. Mater.
,
62
(
9
), pp.
682
685
.
11.
Liu
,
Z.
,
Li
,
R.
,
Wang
,
H.
, and
Zhang
,
T.
,
2011
, “
Nitrogen-Doping Effect on Glass Formation and Primary Phase Selection in Cu–Zr–Al Alloys
,”
J. Alloy. Compd.
,
509
(
16
), pp.
5033
5037
.
12.
Cao
,
D.
,
Wu
,
Y.
,
Liu
,
X. J.
,
Wang
,
H.
,
Wang
,
X. Z.
, and
Lu
,
Z. P.
,
2019
, “
Enhancement of Glass-Forming Ability and Plasticity via Alloying the Elements Having Positive Heat of Mixing With Cu in Cu48Zr48Al4 Bulk Metallic Glass
,”
J. Alloy. Compd.
,
777
, pp.
382
391
.
13.
Wang
,
W. H.
,
Dong
,
C.
, and
Shek
,
C. H.
,
2004
, “
Bulk Metallic Glasses
,”
Mater. Sci. Eng. R.
,
44
(
2–3
), pp.
45
89
.
14.
Ma
,
H.
,
Wu
,
X.
,
Xia
,
L.
,
Huang
,
L.
,
Xiong
,
L.
,
Yang
,
H.
,
Zhong
,
B.
,
Zhang
,
T.
,
Yang
,
Z. W.
,
Gao
,
F.
, and
Wen
,
G. W.
,
2020
, “
Friction and Wear Behavior of Carbon Fiber Reinforced Lithium Aluminosilicate Composites Sliding Against GCr15 Steel
,”
Friction
,
8
(
6
), pp.
1063
1072
.
15.
Maddala
,
D.
, and
Hebert
,
R. J.
,
2011
, “
Effect of Notch Toughness and Hardness on Sliding Wear of Cu50Hf41. 5Al8. 5 Bulk Metallic Glass
,”
Scr. Mater.
,
65
(
7
), pp.
630
633
.
16.
Obeydavi
,
A.
,
Shafyei
,
A.
,
Rezaeian
,
A.
,
Kameli
,
P.
, and
Lee
,
J. W.
,
2020
, “
Microstructure, Mechanical Properties and Corrosion Performance of Fe44Cr15Mo14Co7C10B5Si5 Thin Film Metallic Glass Deposited by DC Magnetron Sputtering
,”
J. Non-Cryst. Solids.
,
527
, p.
119718
.
17.
Ding
,
Z. H.
,
Yao
,
B.
,
Qiu
,
L. X.
,
Bai
,
S. Z.
,
Guo
,
X. Y.
,
Xue
,
Y. F.
,
Wang
,
W. R.
,
Zhou
,
X. D.
, and
Su
,
W. H.
,
2005
, “
Formation of Titanium Nitride by Mechanical Milling and Isothermal Annealing of Titanium and Boron Nitride
,”
J. Alloy. Compd.
,
391
(
1–2
), pp.
77
81
.
18.
Hsu
,
C. Y.
,
Sheu
,
T. S.
,
Yeh
,
J. W.
, and
Chen
,
S. K.
,
2010
, “
Effect of Iron Content on Wear Behavior of AlCoCrFexMo0. 5Ni High-Entropy Alloys
,”
Wear
,
268
(
5–6
), pp.
653
659
.
19.
Wang
,
Y.
,
Yang
,
Y.
,
Yang
,
H.
,
Zhang
,
M.
,
Ma
,
S.
, and
Qiao
,
J.
,
2018
, “
Microstructure and Wear Properties of Nitrided AlCoCrFeNi High-Entropy Alloy
,”
Mater. Chem. Phys.
,
210
, pp.
233
239
.
20.
Chen
,
Y.
,
Tao
,
P.
,
Zhang
,
W.
,
Zhang
,
C.
, and
Zhu
,
K.
,
2021
, “
Study on Friction and Wear Properties of Zr–Cu–Ni–Al Crystalline Powder Cladding and Amorphous Composite Powder Cladding by Laser
,”
Coatings
,
11
(
1
), p.
103
.
21.
Joseph
,
J.
, and
Fabijanic
,
D. M.
,
2013
, “
Characterization and Tribological Performance of Cu-Based Intermetallic Layers
,”
Key Eng. Mater.
,
533
, pp.
195
200
.
22.
Ashby
,
M. F.
, and
Greer
,
A. L.
,
2006
, “
Metallic Glasses as Structural Materials
,”
Scr. Mater.
,
54
(
3
), pp.
321
326
.
23.
Trexler
,
M. M.
, and
Thadhani
,
N. N.
,
2010
, “
Mechanical Properties of Bulk Metallic Glasses
,”
Prog. Mater. Sci.
,
55
(
8
), pp.
759
839
.
24.
Suh
,
N. P.
, and
Sin
,
H. C.
,
1983
, “
On Prediction of Wear Coefficients in Sliding Wear
,”
Tribol. Trans.
,
26
(
3
), pp.
360
366
.
25.
Liao
,
Z.
,
Hua
,
N.
,
Chen
,
W.
,
Huang
,
Y.
, and
Zhang
,
T.
,
2018
, “
Correlations Between the Wear Resistance and Properties of Bulk Metallic Glasses
,”
Intermetallics
,
93
, pp.
290
298
.
You do not currently have access to this content.