Recently, it has been shown that while asperity models show correctly qualitative features of rough contact problems (linearity in area–load, negative exponential dependence of load on separation which means also linearity of stiffness with load), the exact value of the coefficients are not precise for the idealized case of Gaussian distribution of heights. This is due to the intrinsic simplifications, neglecting asperity coalescence, and interaction effects. However, the issue of Gaussianity has not been proved or experimentally verified in many cases, and here, we show that, for example, assuming a Weibull distribution of asperity heights, the area–load linear coefficient is not much affected, while the relationships load–separation and, therefore, also stiffness–load do change largely, particularly when considering bounded distributions of asperity heights. It is suggested that Gaussianity of surfaces should be further tested in the experiments, before applying the most sophisticated rough contact models based on the Gaussian assumption.

References

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
A295
, pp.
300
319
.
2.
Persson
,
B. N.
,
2001
, “
Theory of Rubber Friction and Contact Mechanics
,”
J. Chem. Phys.
,
115
(
8
), pp.
3840
3861
.
3.
Persson
,
B. N. J.
,
2007
, “
Relation Between Interfacial Separation and Load: A General Theory of Contact Mechanics
,”
Phys. Rev. Lett.
,
99
(
12
), p.
125502
.
4.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Tribol.
,
93
(
3
), pp.
398
407
.
5.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.
6.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2008
, “
Asperity Contact Theories: Do They Predict Linearity Between Contact Area and Load?
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2555
2572
.
7.
Lorenz
,
B.
,
Carbone
,
G.
, and
Schulze
,
C.
,
2010
, “
Average Separation Between a Rough Surface and a Rubber Block: Comparison Between Theories and Experiments
,”
Wear
,
268
(
7
), pp.
984
990
.
8.
Brown
,
S. R.
, and
Scholz
,
C. H.
,
1985
, “
Closure of Random Elastic Surfaces in Contact
,”
J. Geophys. Res.
,
90
(
B7
), pp.
5531
5545
.
9.
Pastewka
,
L.
,
Prodanov
,
N.
,
Lorenz
,
B.
,
Müser
,
M. H.
,
Robbins
,
M. O.
, and
Persson
,
B. N.
,
2013
, “
Finite-Size Scaling in the Interfacial Stiffness of Rough Elastic Contacts
,”
Phys. Rev. E
,
87
(
6
), p.
062809
.
10.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
11.
Vasilev
,
B.
,
Bott
,
S.
,
Rzehak
,
R.
, and
Bartha
,
J. W.
,
2013
, “
Pad Roughness Evolution During Break-In and Its Abrasion due to the Pad-Wafer Contact in Oxide CMP
,”
Microelectron. Eng.
,
111
, pp.
21
28
.
12.
Borucki
,
L.
,
2002
, “
Mathematical Modeling of Polish Rate Decay in Chemical-Mechanical Polishing
,”
J. Eng. Math.
,
43
(2), pp.
105
114
.
13.
Borucki
,
L. J.
,
Witelski
,
T.
,
Please
,
C.
,
Kramer
,
P. R.
, and
Schwendeman
,
D.
,
2004
, “
A Theory of Pad Conditioning for Chemical-Mechanical Polishing
,”
J. Eng. Math.
,
50
(
1
), pp.
1
24
.
14.
Stein
,
D.
,
Hetherington
,
D.
,
Dugger
,
M.
, and
Stout
,
T.
,
1996
, “
Optical Interferometry for Surface Measurements of CMP Pads
,”
J. Electron. Mater.
,
25
(
10
), pp.
1623
1627
.
15.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Tartaglino
,
U.
,
Volokitin
,
A. I.
, and
Tosatti
,
E.
,
2005
, “
On the Nature of Surface Roughness With Application to Contact Mechanics, Sealing, Rubber Friction and Adhesion
,”
J. Phys.: Condens. Matter
,
17
(
1
), p.
R1
.
16.
Adler
,
R. J.
, and
Firman
,
D.
,
1981
, “
A Non-Gaussian Model for Random Surfaces
,”
Philos. Trans. R. Soc. London A
,
303
(
1479
), pp.
433
462
.
17.
Chilamakuri
,
S. K.
, and
Bhushan
,
B.
,
1998
, “
Contact Analysis of Non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
212
(
1
), pp.
19
32
.
18.
Panda
,
S.
,
Chowdhury
,
S. R.
, and
Sarangi
,
M.
,
2015
, “
Effects of Non-Gaussian Counter-Surface Roughness Parameters on Wear of Engineering Polymers
,”
Wear
,
332–333
, pp.
827
835
.
19.
McCool
,
J. I.
,
1992
, “
Non-Gaussian Effects in Microcontact
,”
Int. J. Mach. Tools Manuf.
,
32
(
1
), pp.
115
123
.
20.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2002
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
(
2
), pp.
367
376
.
21.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2004
, “
Combining and Contacting of Two Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
126
(
2
), pp.
225
232
.
22.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
23.
Wu
,
J. J.
,
2004
, “
Simulation of Non-Gaussian Surfaces With FFT
,”
Tribol. Int.
,
37
(
4
), pp.
339
346
.
You do not currently have access to this content.