In this research work, pulverized biochar obtained by the pyrolysis of rice husk is used as particulate reinforcement in unsaturated polyester matrix. The effects of the particle loading and particle size on tribological properties of the particulate composites were investigated. The average size of biochar particles obtained through pulverizing using ball-mill varied from 510 nm to 45 nm while milling for a duration ranging from 6 hrs to 30 hrs. The particle loading in the composite was varied from 0.5 wt.% to 2.5 wt.%. It was observed that the particle size and particle content played a vital role in the tribological properties of the composites. The specific wear rate of the specimen having particle loading of 2.5 wt.% with 45 nm particle size exhibited a decrease of 56.36% upon comparing with the specific wear rate of cured pure resin. The coefficient of friction of the same sample decreased by 6.42% when compared to that of a cured pure resin. The biochar particles were subjected to X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and atomic force microscope analysis for characterization. Morphological studies were performed on the worn surfaces by scanning electron microscope (SEM) and optical microscopy.

References

1.
Velmurugan
,
R.
, and
Manikandan
,
V.
,
2007
, “
Mechanical Properties of Palmyra/Glass Fiber Hybrid Composites
,”
Compos. Part A
,
38
(
10
), pp.
2216
2226
.
2.
Sreenivasan
,
V. S.
,
Ravindran
,
D.
,
Manikandan
,
V.
, and
Narayanasamy
,
R.
,
2011
, “
Mechanical Properties of Randomly Oriented Short Sansevieria Cylindrica Fibre/Polyester Composites
,”
Mater. Des.
,
32
(
4
), pp.
2444
2455
.
3.
Antunes
,
P. V.
,
Ramalho
,
A.
, and
Carrilho
,
E. V. P.
,
2014
, “
Mechanical and Wear Behaviours of Nano and Microfilled Polymeric Composite: Effect of Filler Fraction and Size
,”
Mater. Des.
,
61
, pp.
50
60
.
4.
Arumuga Prabu
,
V.
,
Uthayakumar
,
M.
,
Manikandan
,
V.
,
Rajini
,
N.
, and
Jeyaraj
,
P.
,
2014
, “
Influence of Redmud on the Mechanical, Damping and Chemical Resistance Properties of Banana/Polyester Hybrid Composites
,”
Mater. Des.
,
64
, pp.
270
279
.
5.
Beardmore
,
P.
,
1986
, “
Composite Structures for Automobiles
,”
Compos. Struct.
,
5
(
3
), pp.
163
176
.
6.
Feng
,
D.
,
Ya-Hong
,
X. U.
,
Ya-Ping
,
Z.
, and
Xiao-Su
,
Y. I.
,
2005
, “
Study on Morphology and Mechanical Properties of High Functional Epoxy Based Clay Nano Composites
,”
Chin. J. Aeronaut.
,
18
(
3
), pp.
279
282
.
7.
Chauhan
,
S. R.
, and
Thakur
,
S.
,
2013
, “
Effects of Particle Size, Particle Loading and Sliding Distance on the Friction and Wear Properties of Cenosphere Particulate Filled Vinylester Composites
,”
Mater. Des.
,
51
, pp.
398
408
.
8.
Matthews
,
F. L.
, and
Rawlings
,
R. D.
,
2005
,
Composite Materials: Engineering and Science
, 1st ed.,
Woodhead Publishing Ltd.
,
Cambridge, UK
, pp.
169
173
, 310–311.
9.
Nourbakhsh
,
A.
, and
Ashori
,
A.
,
2010
, “
Wood Plastic Composites From Agro-Waste Materials: Analysis of Mechanical Properties
,”
Bioresour. Technol.
,
101
(
7
), pp.
2525
2528
.
10.
Ashori
,
A.
, and
Nourbakhsh
,
A.
,
2010
, “
Bio-Based Composites From Waste Agricultural Residues
,”
Waste Manage.
,
30
(
4
), pp.
680
684
.
11.
Son
,
J. I.
,
Yang
,
H. S.
, and
Kim
,
H. J.
,
2004
, “
Physico-Mechanical Properties of Paper Sludge-Thermoplastic Polymer Composites
,”
J. Thermoplast. Compos. Mater.
,
17
(
6
), pp.
509
522
.
12.
Bhattacharya
,
S. K.
, and
Tummala
,
R. R.
,
2001
, “
Integral Passives for Next Generation of Electronic Packaging: Application of Epoxy/Ceramic Nanocomposites as Integral Capacitors
,”
Microelectron. J.
,
32
(1), pp.
11
19
.
13.
Naganuma
,
T.
, and
Kagawa
,
Y.
,
2002
, “
Effect of Particle Size on the Optically Transparent Nano Meter-Order Glass Particle-Dispersed Epoxy Matrix Composites
,”
Compos. Sci. Technol.
,
62
(
9
), pp.
1187
1189
.
14.
Rong
,
M. Z.
,
Zhang
,
M. Q.
,
Liu
,
H.
,
Zeng
,
H.
,
Wetzel
,
B.
, and
Friedrich
,
K.
,
2001
, “
Microstructure and Tribological Behavior of Polymeric Nanocomposites
,”
Ind. Lubr. Tribol.
,
53
(
2
), pp.
72
77
.
15.
Li
,
F.
,
Hu
,
K.-A.
,
Li
,
J.-L.
, and
Zhao
,
B.-Y.
,
2002
, “
The Friction and Wear Characteristics of Nanometer ZnO Filled Polytetrafluoroethylene
,”
Wear
,
249
(10–11), pp.
877
882
.
16.
Zhang
,
M. Q.
,
Rong
,
M. Z.
,
Yu
,
S. L.
,
Wetzel
,
B.
, and
Friedrich
,
K.
,
2002
, “
Improvement of Tribological Performance of Epoxy by the Addition of Irradiation Grafted Nano-Inorganic Particles
,”
Macromol. Mater. Eng.
,
287
(2), pp.
111
115
.
17.
Ng
,
C. B.
,
Schadler
,
L. S.
, and
Siegel
,
R. W.
,
1999
, “
Synthesis and Mechanical Properties of TiO2-Epoxy Nanocomposites
,”
Nanostruct. Mater.
,
12
(1–4), pp.
507
510
.
18.
Zhang
,
Q. X.
,
Yu
,
Z. Z.
,
Xie
,
X. L.
, and
Mai
,
Y. W.
,
2004
, “
Crystallization and Impact Energy of Polypropylene/CaCO3 Nanocomposites With Nonionic Modifier
,”
Polymer
,
45
(17), pp.
5985
5994
.
19.
Wang
,
W. Z.
, and
Liu
,
T. X.
,
2008
, “
Mechanical Properties and Morphologies of Polypropylene Composites Synergistically Filled by Styrene–Butadiene Rubber and Silica Nanoparticles
,”
J. Appl. Polym. Sci.
,
109
(
3
), pp.
1654
1660
.
20.
Tjong
,
S. C.
, and
Bao
,
S.
,
2007
, “
Structure and Mechanical Behavior of Isotactic Polypropylene Composites Filled With Silver Nanoparticles
,”
E-Polymers
,
7
(1), pp.
1618
1634
.
21.
Liu
,
Y. Q.
, and
Kontopoulou
,
M.
,
2006
, “
The Structure and Physical Properties of Polypropylene and Thermoplastic Olefin Nanocomposites Containing Nanosilica
,”
Polymer
,
47
(
22
), pp.
7731
7739
.
22.
Suresha
,
G. B.
,
Ravi Kumar
,
B. N.
,
Venkataramareddy
,
M.
, and
Jayaraju
,
T.
,
2010
, “
Role of Micro/Nano Fillers on Mechanical and Tribological Properties of Polyamide66/Polypropylene Composites
,”
Mater. Des.
,
31
(
4
), pp.
1993
2000
.
23.
Rong
,
M. Z.
,
Zhang
,
M. Q.
,
Zheng
,
Y. X.
,
Zeng
,
H. M.
,
Walter
,
R.
, and
Friedrich
,
K.
,
2001
, “
Structure–Property Relationships of Irradiation Grafted Nano-Inorgnic Particle Filled Polypropylene Composites
,”
Polymer
,
42
(1), pp.
167
83
.
24.
Lin
,
J. C.
,
2007
, “
Compression and Wear Behavior of Composites Filled With Various Nanoparticles
,”
Compos. Part B
,
38
(
1
), pp.
79
85
.
25.
Sun
,
T.
,
Fan
,
H.
,
Wang
,
Z.
,
Liu
,
X.
, and
Wu
,
Z.
,
2015
, “
Modified Nano Fe2O3-Epoxy Composite With Enhanced Mechanical Properties
,”
Mater. Des.
,
87
, pp.
10
16
.
26.
Bahadur
,
S.
, and
Sunkara
,
C.
,
2005
, “
Effect of Transfer Film Structure, Composition and Bonding on the Tribological Behavior of Polyphenylene Sulfide Filled With Nano Particles of TiO2, ZnO, CuO and SiC
,”
Wear
,
258
(
9
), pp.
1411
1421
.
27.
Li
,
C.
,
Zhong
,
Z.
,
Lin
,
Y.
, and
Klaus
,
F.
,
2007
, “
Tribological Properties of High Temperature Resistant Polymer Composites With Fine Particles
,”
Tribol. Int.
,
40
(7), pp.
1170
1178
.
28.
Kurahatti
,
R. V.
,
Surendranathan
,
A. O.
,
Srivastava
,
S.
,
Singh
,
N.
,
Ramesh Kumar
,
A. V.
, and
Suresha
,
B.
,
2011
, “
Role of Zirconia Filler on Friction and Dry Sliding Wear Behaviour of Bismaleimide Nanocomposites
,”
Mater. Des.
,
32
(
5
), pp.
2644
2649
.
29.
Tuck
,
C.
,
Perez
,
E.
,
Horvath
,
I.
,
Sheldon
,
R.
, and
Poliakoff
,
M.
,
2012
, “
Valorization of Biomass: Deriving More Value From Waste
,”
Science
,
337
(
6095
), pp.
695
699
.
30.
Johar
,
N.
,
Ahmad
,
I.
, and
Dufresne
,
A.
,
2012
, “
Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals From Rice Husk
,”
Ind. Crops Prod.
,
37
(
1
), pp.
93
99
.
31.
Turmanova
,
S.
,
Genieva
,
S.
, and
Vlaev
,
L.
,
2012
, “
Obtaining Some Polymer Composites Filled With Rice Husks Ash-A Review
,”
Int. J. Chem.
,
4
(
4
), pp.
62
89
.
32.
Satheesh Raja
,
R.
,
Manisekar
,
K.
, and
Manikandan
,
V.
,
2014
, “
Study on Mechanical Properties of Fly Ash Impregnated Glass Fiber Reinforced Polymer Composites Using Mixture Design Analysis
,”
Mater. Des.
,
55
, pp.
499
508
.
33.
Arumuga Prabu
,
V.
,
Manikandan
,
V.
, and
Uthayakumar
,
M.
,
2012
, “
Friction and Dry Sliding Wear Behavior of Red Mud Filled Banana Fibre Reinforced Unsaturated Polyester Composites Using Taguchi Approach
,”
Mater. Phys. Mech.
,
1
, pp.
34
45
.
You do not currently have access to this content.