Abstract

The Li/SF6 combustion reaction can provide power for unmanned underwater vehicle (UUV) due to the advantages of high heat release and no gaseous combustion products. Exploring the combustion and heat transfer characteristics of Li/SF6 can greatly improve the performance of the UUV combustor. In this paper, based on the operation requirements of UUV combustor, the C300 combustion reactor is designed, the Li/SF6 combustion experimental system is established, and the Li/SF6 combustion and heat transfer experiments are performed. The experimental results show that the overall combustion process lasts about 1.55 h, and the flame temperature is higher than 1768 °C. The temperature in the gas phase decreased gradually along the radial direction and increased along the axis. Eight quasi-equilibrium states are detected, and the maximum combustion power is 12.73 kW. As the pressure increases, the combustion power will increase accordingly. Under the maximum power, the heat transfer efficiency of the C300 combustion reactor can be calculated to be η=85.93% by using water as the heat transfer medium. The heat transfer quantity of the combustion furnace Qf is 2.07 times that of the combustion chamber Qc, and the heat generated by combustion is concentrated in the lower part of the combustion reactor. In addition, a thermal resistance model is proposed to optimize the heat transfer process. Finally, the upper fuel is fully combusted, while the bottom fuel is poorly combusted due to the phenomenon of insufficient melting and combustion product covering.

References

1.
Weydahl
,
H.
,
Gilljam
,
M.
,
Lian
,
T.
,
Johannessen
,
T. C.
,
Holm
,
S. I.
, and
Hasvold
,
J. I.
,
2020
, “
Fuel Cell Systems for Long-Endurance Autonomous Underwater Vehicles—Challenges and Benefits
,”
Int. J. Hydrogen Energy
,
45
(
8
), pp.
5543
5553
.
2.
Shih
,
N. C.
,
Weng
,
B. J.
,
Lee
,
J. Y.
, and
Hsiao
,
Y. C.
,
2014
, “
Development of a 20 kW Generic Hybrid Fuel Cell Power System for Small Ships and Underwater Vehicles
,”
Int. J. Hydrogen Energy
,
39
(
25
), pp.
13894
13901
.
3.
Kim
,
Y. J.
,
Kim
,
H. T.
, and
Lee
,
C.
,
2009
, “
Development of a Power Control System for AUVs Probing for Underwater Mineral Resources
,”
J. Mar. Sci. Appl.
,
8
(
4
), pp.
259
266
.
4.
Chen
,
X.
,
Bose
,
N.
,
Brito
,
M.
,
Khan
,
F.
,
Thanyamanta
,
B.
, and
Zou
,
T.
,
2021
, “
A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles
,”
Reliab. Eng. Syst. Saf.
,
216
, p.
108011
.
5.
Wang
,
X.
,
Shang
,
J.
,
Luo
,
Z.
,
Tang
,
L.
,
Zhang
,
X.
, and
Li
,
J.
,
2012
, “
Reviews of Power Systems and Environmental Energy Conversion for Unmanned Underwater Vehicles
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1958
1970
.
6.
Lakeman
,
J. B.
,
Rose
,
A.
,
Pointon
,
K. D.
,
Browning
,
D. J.
,
Lovell
,
K. V.
,
Waring
,
S. C.
, and
Horsfall
,
J. A.
,
2006
, “
The Direct Borohydride Fuel Cell for UUV Propulsion Power
,”
J. Power Sources
,
162
(
2
), pp.
765
772
.
7.
Bradley
,
A. M.
,
Feezor
,
M. D.
,
Singh
,
H.
, and
Sorrell
,
F. Y.
,
2001
, “
Power Systems for Autonomous Underwater Vehicles
,”
IEEE J. Ocean. Eng.
,
26
(
4
), pp.
526
538
.
8.
Kiely
,
D.
, and
Moore
,
J.
,
2002
, “
Hydrocarbon Fueled UUV Power Systems
,”
Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles
,
San Antonio, TX
,
Jun. 21
,
IEEE
, pp.
121
128
.
9.
Hasvold
,
Ø
,
Johansen
,
K. H.
,
Mollestad
,
O.
,
Forseth
,
S.
, and
Størkersen
,
N.
,
1999
, “
The Alkaline Aluminium/Hydrogen Peroxide Power Source in the Hugin II Unmanned Underwater Vehicle
,”
J. Power Sources
,
80
(
1–2
), pp.
254
260
.
10.
Hughes
,
T. G.
,
Smith
,
R. B.
, and
Kiely
,
D. H.
,
1983
, “
Stored Chemical Energy Propulsion System for Underwater Applications
,”
J. Energy
,
7
(
2
), pp.
128
133
.
11.
Greer
,
C. J.
,
Paul
,
M. V.
, and
Rattner
,
A. S.
,
2018
, “
Analysis of Lithium-Combustion Power Systems for Extreme Environment Spacecraft
,”
Acta Astronaut.
,
151
, pp.
68
79
.
12.
Zhou
,
C.
,
Qiu
,
H.
,
Zheng
,
H.
, and
Pan
,
X.
,
2009
, “
B206 Numerical Simulation of Li/SF6 Combustion Flow Field (Combustion-5)
,”
Proceedings of the International Conference on Power Engineering (ICOPE)
,
Kobe, Japan
,
Nov. 16–20
, pp.
111
116
.
13.
Chan
,
S.
,
Tan
,
C.
,
Zhao
,
Y.
, and
Janke
,
P.
,
1991
, “
Li−SF6 Combustion in Stored Chemical Energy Propulsion Systems
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
1139
1146
.
14.
Crouse
,
M. E.
,
2017
, “
Stored Chemical Energy Propulsion System (SCEPS) Reactor Injector Performance Prediction Modeling With Experimental Validation
,”
M.D. dissertation
,
The Pennsylvania State University
,
Pennsylvania, CA
.
15.
Yan
,
Z. P.
,
Yu
,
H. M.
, and
Hou
,
S. P.
,
2016
, “
Diving Control of Underactuated Unmanned Undersea Vehicle Using Integral-Fast Terminal Sliding Mode Control
,”
J. Cent. South Univ.
,
23
(
5
), pp.
1085
1094
.
16.
Burke
,
A. A.
, and
Carreiro
,
L. G.
,
2006
, “
System Modeling of an Air-Independent Solid Oxide Fuel Cell System for Unmanned Undersea Vehicles
,”
J. Power Sources
,
158
(
1
), pp.
428
435
.
17.
Sands
,
T.
,
2020
, “
Development of Deterministic Artificial Intelligence for Unmanned Underwater Vehicles (UUV)
,”
J. Mar. Sci. Eng.
,
8
(
8
), p.
578
.
18.
Mendez
,
A.
,
Leo
,
T.
, and
Herreros
,
M.
,
2014
, “
Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles
,”
Energies
,
7
(
7
), pp.
4676
4693
.
19.
Groff
,
E. G.
, and
Faeth
,
G. M.
,
1978
, “
Steady Metal Combustor as a Closed Thermal Energy Source
,”
J. Hydronautics
,
12
(
2
), pp.
63
70
.
20.
Chen
,
L.
, and
Faeth
,
G.
,
1983
, “
Structure of Turbulent Reacting Gas Jets Submerged in Liquid Metals
,”
Combust. Sci. Technol.
,
31
(
5–6
), pp.
277
296
.
21.
Qin
,
K.
,
Wang
,
H.
,
Wang
,
X.
,
Sun
,
Y.
, and
Luo
,
K.
,
2020
, “
Thermodynamic and Experimental Investigation of a Metal Fuelled Steam Rankine Cycle for Unmanned Underwater Vehicles
,”
Energy Convers. Manage.
,
223
, p.
113281
.
22.
Lyu
,
H. Y.
,
Chen
,
L. D.
, and
Hsu
,
K. Y.
,
1992
, “
Prediction of LI-SF6 Wick Combustion
,”
J. Propuls. Power
,
8
(
6
), pp.
1131
1137
.
23.
Hsu
,
K. Y.
, and
Chen
,
L. D.
,
1995
, “
An Experimental Investigation of Li and SF6 Wick Combustion
,”
Combust. Flame
,
102
(
1–2
), pp.
73
86
.
24.
Zhang
,
Q.
,
Zhu
,
W.
,
Chen
,
X.
,
Chen
,
H.
, and
Zhang
,
H.
,
2022
, “
Study on Ignition and Combustion Characteristics of Li/SF6 Based on Closed Thermal Power System
,”
Combust. Sci. Technol.
,
2022
, pp.
1
24
.
25.
Liu
,
C.
,
Li
,
S.
,
Li
,
X.
,
Wang
,
Y.
, and
Chen
,
Y.
,
2018
, “
Experimental Investigation of Li and SF6 Combustion for Stored Chemical Energy Propulsion Systems
,”
Proceedings of the 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)
,
Wuhan, China
,
Dec. 1–3
,
IEEE
, pp.
1
6
.
26.
Asakawa
,
J.
,
Koizumi
,
H.
,
Kojima
,
S.
,
Nakano
,
M.
, and
Komurasaki
,
K.
,
2019
, “
Laser-Ignited Micromotor Using Multiple Stacked Solid Propellant Pellets
,”
J. Propuls. Power
,
35
(
1
), pp.
41
53
.
27.
Lucía
,
O.
,
Maussion
,
P.
,
Dede
,
E. J.
, and
Burdío
,
J. M.
,
2013
, “
Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges
,”
IEEE Trans. Ind. Electron.
,
61
(
5
), pp.
2509
2520
.
28.
Sun
,
R.
,
Shi
,
Y.
,
Bing
,
Z.
,
Li
,
Q.
, and
Wang
,
R.
,
2019
, “
Metal Transfer and Thermal Characteristics in Drop-on-Demand Deposition Using Ultra-High Frequency Induction Heating Technology
,”
Appl. Therm. Eng.
,
149
, pp.
731
744
.
29.
Mohan
,
S.
,
Trunov
,
M. A.
, and
Dreizin
,
E. L.
,
2008
, “
Heating and Ignition of Metallic Particles by a CO2 Laser
,”
J. Propuls. Power
,
24
(
2
), pp.
199
205
.
You do not currently have access to this content.