Abstract

Fugitive dust, a physical factor commonly encountered in battle, would interact with the tail gas of armored vehicles during the diffusion process to affect infrared characteristics of tail gas and infrared detection probability of vehicles. However, limited information exists regarding the impacts of fugitive dust on infrared signature of tail gas. The gas-solid two-phase coupled flow and thermal infrared transport model was developed to comprehensively study the infrared characteristics of coupling phenomenon between dynamic dust and high-temperature tail gas, which considers the gas-solid coupled flow and heat transfer as well as the particle emission and scattering. The characteristics of coupled infrared caused by vehicle-induced dust were studied, along with the effects of particle physical parameters (i.e., particle size and concentration) on coupled infrared and the intrinsic mechanisms. Additionally, validation experiment was performed to validate the findings in the simulation results. The results show that (1) the coupling phenomenon can significantly enhance the infrared brightness and detection area of tail gas, especially in the 8–14 μm waveband; (2) the coupling phenomenon has different effects on the infrared signature of exhaust gas in different wavebands owing to the different proportions of particle radiation and gas radiation in the total radiation in different wavebands; and (3) the sensitivity of coupled infrared to particle size parameters and concentration parameters is also different, which is related to the spectral radiative physical parameters of dust particle components.

References

1.
EPA
,
1972
, “
AP-42, Compilation of air Pollutant Emission Factors
,”
US Environmental Protection Agency
, Last Modified 1995. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors.
2.
Veranth
,
J. M.
,
Pardyjak
,
E. R.
, and
Seshadri
,
G.
,
2003
, “
Vehicle-Generated Fugitive Dust Transport: Analytic Models and Field Study
,”
Atmos. Environ.
,
37
(
16
), pp.
2295
2303
.
3.
Gillies
,
J. A.
,
Etyemezian
,
V.
,
Kuhns
,
H.
,
Nikolic
,
D.
, and
Gillette
,
D. A.
,
2005
, “
Effect of Vehicle Characteristics on Unpaved Road Dust Emission
,”
Atmos. Environ.
,
39
(
13
), pp.
2341
2347
.
4.
Chen
,
J. X.
,
Fu
,
X.
, and
Wegman
,
J.
,
1999
, “
Real-Time Simulation of Dust Behavior Generated by a Fast Traveling Vehicle
,”
ACM Trans. Model. Comput. Simul.
,
9
(
2
), pp.
81
104
.
5.
Tong
,
X.
,
Luke
,
E. A.
, and
Smith
,
R.
,
2014
, “
Numerical Validation of a Near-Field Fugitive Dust Model for Vehicles Moving on Unpaved Surfaces
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
228
(
7
), pp.
747
757
.
6.
Kim
,
S.
,
Kim
,
S.
,
Kim
,
M.
,
Song
,
S.
, and
Lee
,
J. S.
,
2020
, “
Infrared Signature of NEPE, HTPB Rocket Plume Under Varying Flight Conditions and Motor Size
,”
Infrared Phys. Technol.
,
112
, p.
103590
.
7.
Schleijpen
,
H. M. A.
, and
Neele
,
F. P.
,
2004
, “
Ship Exhaust gas Plume Cooling
,”
Proceedings of the Targets and Backgrounds X: Characterization and Representation
,
Orlando, FL
,
Aug. 5
,
SPIE
, Vol.
5431
, pp.
66
76
.
8.
Xu
,
Z.
,
Han
,
Y.
,
Ren
,
D.
, and
Li
,
J.
,
2021
, “
An Approach of Multistage Connected Ventilation Cooling Structure for Armored Vehicle Thermal Management
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
2
), p.
021008
.
9.
Feng
,
Y.
,
Jin
,
W.
,
Wang
,
J.
, and
Lu
,
Y.
,
2021
, “
A Method Based on Ejector Technology to Suppress the Infrared Radiation of the Special Vehicle Exhaust gas
,”
Therm. Sci.
,
25
(
5
), pp.
3303
3313
.
10.
Nelson
,
H. F.
,
1984
, “
Influence of Particulates on Infrared Emission From Tactical Rocket Exhausts
,”
J. Spacecr. Rockets
,
21
(
5
), pp.
425
432
.
11.
Nelson
,
H. F.
,
1992
, “
Backward Monte Carlo Modeling for Rocket Plume Base Heating
,”
J. Thermophys. Heat Transfer
,
6
(
3
), pp.
556
558
.
12.
Everson
,
J.
, and
Nelson
,
H. F.
,
1993
, “
Rocket Plume Radiation Base Heating by Reverse Monte Carlo Simulation
,”
J. Thermophys. Heat Transfer
,
7
(
4
), pp.
717
723
.
13.
Sghaier
,
T.
,
Sifaoui
,
M. S.
, and
Soufiani
,
A.
,
2000
, “
Study of Radiation in Spherical Media Using Discrete Ordinates Method Associated With the Finite Legendre Transform
,”
J. Quant. Spectrosc. Radiat. Transfer
,
64
(
4
), pp.
339
351
.
14.
Li
,
H.
,
Flamant
,
G.
, and
Lu
,
J.
,
2003
, “
An Alternative Discrete Ordinate Scheme for Collimated Irradiation Problems
,”
Int. Commun. Heat Mass Transfer
,
30
(
1
), pp.
61
70
.
15.
Stamnes
,
K.
,
Tsay
,
S. C.
,
Wiscombe
,
W.
, and
Jayaweera
,
K.
,
1988
, “
Numerically Stable Algorithm for Discrete-Ordinate-Method Radiative Transfer in Multiple Scattering and Emitting Layered Media
,”
Appl. Opt.
,
27
(
12
), pp.
2502
2509
.
16.
Hao
,
Z.
,
Gong
,
F.
,
Wang
,
D.
, and
Chen
,
J.
,
2010
, “
The Infrared Scatter Characteristics of Dust Aerosol and Cloud Droplet Particle
,”
Proceedings of the Remote Sensing of Clouds and the Atmosphere XV
,
Toulouse, France
,
Oct. 11
,
SPIE
, Vol.
7827
, pp.
239
239
.
17.
Pan
,
D.
,
Jiang
,
Z.
,
Gui
,
W.
,
Maldague
,
X.
, and
Jiang
,
K.
,
2020
, “
Influence of Dust on Temperature Measurement Using Infrared Thermal Imager
,”
IEEE Sensors J.
,
20
(
6
), pp.
2911
2918
.
18.
Pan
,
D.
,
Jiang
,
Z.
,
Gui
,
W.
,
Yang
,
C.
,
Xie
,
Y.
, and
Jiang
,
K.
,
2018
, “
A Method for Improving the Accuracy of Infrared Thermometry Under the Influence of Dust
,”
IFAC PapersOnLine
,
51
(
21
), pp.
246
250
.
19.
Ludwig
,
C. B.
,
Malkmus
,
W.
,
Reardon
,
J. E.
, and
Thomson
,
J. A. L.
,
1973
, “
Handbook of Infrared Radiation From Combustion Gases
,” NASA Report No. NASA SP-3080.
20.
Shi
,
G.
,
2007
,
Atmospheric Radiation Science
,
Science Press
,
Beijing
.
21.
Song
,
Y.
,
2007
, “
Study on Source Six Flux Method for Radiative Transfer in Participating Medium
,”
Master’s thesis
,
Harbin Institute of Technology
,
Harbin, China
.
22.
Ruan
,
L.
,
Qi
,
H.
,
Wang
,
S.
,
Zhao
,
H.
, and
Li
,
B.
,
2009
, “
Arbitrary Directional Radiative Intensity by Source Six Flux Method in Cylindrical Coordinate
,”
Chin. J. Comput. Phys.
,
26
(
3
), pp.
437
443
.
23.
González-Tello
,
P.
,
Camacho
,
F.
,
Vicaria
,
J. M.
, and
González
,
P. A.
,
2008
, “
A Modified Nukiyama-Tanasawa Distribution Function and a Rosin-Rammler Model for the Particle-Size-Distribution Analysis
,”
Powder Technol.
,
186
(
3
), pp.
278
228
.
You do not currently have access to this content.