Abstract

Enhancing the performance of passive solar chimneys constitutes a key point for successful applications in bioclimatic architecture. Present work assesses applications of several kinds of flow disturbers in a rooftop solar chimney, under isoflux heating and windless conditions, and including surface radiative effects. Systematic numerical calculations are conducted aiming a comprehensive analysis, by means of a low-Reynolds turbulence model, being the range of Rayleigh number considered 2.170 × 1012 − 2.170 × 1013. Effect of different geometrical parameters is analyzed, although main attention is posed on the influence of disturbers elements on the thermohydraulic behavior of the established airflow, for obtaining best performance conditions. Some obstacles cause a clear decrease in the efficiency of the system, but given disturbers appropriately located produce valuable enhancements in the thermal or dynamic efficiency. Insertion of intermediate plates proves to be the best option, achieving maximum increases of even approximately 50% in the ventilation capacity.

References

1.
Smolec
,
W.
, and
Thomas
,
A.
,
1994
, “
Problems Encountered in Heat Transfer Studies of a Trombe Wall
,”
Energy Convers. Manage.
,
35
(
6
), pp.
483
491
.
2.
Gan
,
G.
, and
Riffat
,
S. B.
,
1998
, “
A Numerical Study of Solar Chimney for Natural Ventilation of Buildings With Heat Recovery
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1171
1187
.
3.
Burek
,
S. A. M.
, and
Habeb
,
A.
,
2007
, “
Air Flow and Thermal Efficiency Characteristics in Solar Chimney and Trombe Walls
,”
Energy Build.
,
39
(
2
), pp.
128
135
.
4.
Ong
,
K. S.
,
2003
, “
A Mathematical Model of a Solar Chimney
,”
Renew. Energy
,
28
(
7
), pp.
1047
1060
.
5.
Bouchair
,
A.
,
1994
, “
Solar Chimney for Promoting Cooling Ventilation in Southern Algeria
,”
Build. Serv. Eng. Res. Technol.
,
15
(
2
), pp.
81
93
.
6.
Warringon
,
R. O.
, and
Ameel
,
T. A.
,
1995
, “
Experimental Studies of Natural Convection in Partitioned Enclosures With a Trombe Wall Geometry
,”
ASME J. Sol. Energy Eng.
,
117
(
1
), pp.
16
21
.
7.
Afonso
,
A.
, and
Oliveira
,
A.
,
2000
, “
Solar Chimneys: Simulation and Experiment
,”
Energy Build.
,
32
(
1
), pp.
71
79
.
8.
Zhang
,
L.
,
Dong
,
J.
,
Sun
,
S.
, and
Chen
,
Z.
,
2021
, “
Numerical Simulation and Sensitivity Analysis on an Improved Trombe Wall
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100941
.
9.
Nguyen
,
A. Q.
,
Nguyen
,
V. T.
,
Tran
,
L. T.
, and
Wells
,
J. C.
,
2022
, “
CFD Analysis of Different Ventilation Strategies for a Room With a Heated Wall
,”
Buildings
,
12
(
9
), p.
1300
.
10.
Stevanoviç
,
S.
,
2013
, “
Optimization of Passive Solar Design Strategies: A Review
,”
Renew. Sustain. Energy Rev.
,
25
, pp.
177
196
.
11.
Zhang
,
T.
,
Tan
,
Y.
,
Yang
,
H.
, and
Zhang
,
X.
,
2016
, “
The Application of Air Layers in Building Envelopes: A Review
,”
Appl. Energy
,
165
, pp.
707
734
.
12.
Omrany
,
H.
,
Ghaffarianhoseini
,
A.
,
Ghaffarianhoseini
,
A.
,
Raahemifar
,
K.
, and
Tookey
,
J.
,
2016
, “
Application of Passive Solar Systems for Improving the Energy Efficiency in Buildings: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
62
, pp.
1252
1269
.
13.
Zhai
,
X. Q.
,
Song
,
Z. P.
, and
Wang
,
R. Z.
,
2011
, “
A Review for the Applications of Solar Chimneys in Buildings
,”
Renew. Sustain. Energy Rev.
,
15
(
8
), pp.
3757
3767
.
14.
Shi
,
L.
,
Zhang
,
G.
,
Yang
,
W.
,
Huang
,
D.
,
Cheng
,
X.
, and
Setunge
,
S.
,
2018
, “
Determining the Influencing Factors on the Performance of Solar Chimney in Building
,”
Renew. Sustain. Energy Rev.
,
88
, pp.
223
238
.
15.
Harris
,
D. J.
, and
Helwig
,
N.
,
2007
, “
Solar Chimney and Building Ventilation
,”
Appl. Energy
,
84
(
2
), pp.
135
146
.
16.
Vázquez-Ruíz
,
A.
,
Navarro
,
J. M. A.
,
Hinojosa
,
J. F.
, and
Xamán
,
J. P.
,
2021
, “
Effect of the Solar Roof Chimney Position on Heat Transfer in a Room
,”
Int. J. Mech. Sci.
,
209
, p.
106700
.
17.
Vázquez-Ruíz
,
A.
,
Navarro
,
J. M. A.
,
Hinojosa
,
J. F.
, and
Xamán
,
J. P.
,
2022
, “
Computational Fluid Dynamics and Experimental Analysis of the Heat Transfer in a Room With a Roof Solar Chimney
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041001
.
18.
Shi
,
L.
,
2019
, “
Impacts of Wind on Solar Chimney Performance in a Building
,”
Energy
,
185
, pp.
55
67
.
19.
Wang
,
Q.
,
Zhang
,
G.
,
Li
,
W.
, and
Shi
,
L.
,
2020
, “
External Wind on the Optimum Designing Parameters of a Wall Solar Chimney in Building
,”
Sustain. Energy Technol. Assess
,
42
, p.
100842
.
20.
Abdo
,
P.
,
Taghipour
,
R.
, and
Huynh
,
B. P.
,
2020
, “
Three-Dimensional Simulation of Wind-Driven Ventilation Through a Windcatcher With Different Inlet Designs
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041008
.
21.
Mathur
,
J.
,
Mathur
,
S.
, and
Anupma
,
2006
, “
Summer-Performance of Inclined Roof Solar Chimney for Natural Convection
,”
Energy Build.
,
38
(
10
), pp.
1156
1163
.
22.
Sakonidou
,
E. P.
,
Karapantsios
,
T. D.
,
Balouktis
,
A. I.
, and
Chassapis
,
D.
,
2008
, “
Modeling of the Optimum Tilt of a Solar Chimney for Maximum Air Flow
,”
Sol. Energy
,
82
(
1
), pp.
80
94
.
23.
Khanal
,
R.
, and
Lei
,
C.
,
2012
, “
Flow Reversal Effects on Buoyancy Induced Air Flow in a Solar Chimney
,”
Sol. Energy
,
86
(
9
), pp.
2783
2794
.
24.
da Silva
,
A. K.
, and
Gosselin
,
L.
,
2005
, “
Optimal Geometry of L and C-Shaped Channels for Maximum Heat Transfer Rate in Natural Convection
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
609
620
.
25.
Zamora
,
B.
, and
Kaiser
,
A. S.
,
2009
, “
Optimum Wall-to-Wall Spacing in Solar Chimney Shaped Channels in Natural Convection by Numerical Investigation
,”
Appl. Therm. Eng.
,
29
(
4
), pp.
762
769
.
26.
Zavala-Guillén
,
I.
,
Xamán
,
J.
,
Hernández-Perez
,
I.
,
Hernández-López
,
I.
,
Gijón-Rivera
,
M.
, and
Chávez
,
Y.
,
2018
, “
Numerical Study of the Optimum Width of 2a Diurnal Double Air-Channel Solar Chimney
,”
Energy
,
147
, pp.
403
417
.
27.
Al-Kayiem
,
H. H.
,
Sreejaya
,
K. V.
, and
Chikere
,
A. O.
,
2018
, “
Experimental and Numerical Analysis of the Influence of Inlet Configuration on the Performance of a Roof Top Solar Chimney
,”
Energy Build.
,
159
, pp.
89
98
.
28.
He
,
G.
,
2020
, “
A General Model for Predicting the Airflow Rates of a Vertically Installed Solar Chimney With Connecting Ducts
,”
Energy Build.
,
229
, p.
110481
.
29.
Ren
,
X. H.
,
Liu
,
R. Z.
, and
Zhao
,
F. Y.
,
2019
, “
Thermal Driven Natural Convective Flows Inside the Solar Chimney Flush-Mounted With Discrete Heating Sources: Reversal and Cooperative Flow Dynamics
,”
Renew. Energy
,
138
, pp.
354
367
.
30.
Zavala-Guillén
,
I.
,
Xamán
,
J.
,
Álvarez
,
G.
,
Arce
,
J.
,
Hernández-Pérez
,
I.
, and
Gijón-Rivera
,
M.
,
2016
, “
Computational Fluid Dynamics for Modeling the Turbulent Natural Convection in a Double Air-Channel Solar Chimney System
,”
Int. J. Mod. Phys.
,
27
(
8
), p.
1650095
.
31.
Wu
,
S. Y.
,
Yan
,
R. R.
, and
Xiao
,
L.
,
2022
, “
Numerically Predicting the Effect of Fin on Solar Trombe Wall Performance
,”
Sustain. Energy Technol. Assess.
,
52
, p.
102012
.
32.
Hosseini
,
S. S.
,
Ramiar
,
A.
, and
Ranjbar
,
A.
,
2017
, “
Numerical Investigation of Rectangular Fin Geometry Effect on Solar Chimney
,”
Energy Build.
,
155
, pp.
296
307
.
33.
Promvonge
,
P.
,
Promthaisong
,
P.
, and
Skullong
,
S.
,
2021
, “
Numerical Heat Transfer in a Solar Air Heater Duct With Punched Delta-Winglet Vortex Generators
,”
Case Studies Therm. Eng.
,
26
, p.
101088
.
34.
Jin
,
D.
,
Quan
,
S.
,
Zuo
,
J.
, and
Xu
,
S.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement in a Solar Air Heater Roughened by Multiple V-Shaped Ribs
,”
Renew. Energy
,
134
, pp.
78
88
.
35.
Nguyen
,
Y. Q.
,
Huynh
,
T. N.
, and
Pham
,
M.-A. H.
,
2021
, “
Modifications of Heat Transfer and Induced Flow Rate of a Solar Chimney by an Obstacle in the Air Channel
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
,
11
(
2
), pp.
482
488
.
36.
Gandjalikhan-Nassab
,
S. A.
,
Sheikhnejad
,
Y.
, and
Foruzan-Nia
,
M.
,
2022
, “
Novel Design of Natural Solar Air Heat for Higher Thermal Performance Utilizing Porous Vortex Generator
,”
Therm. Sci. Eng. Progress
,
33
, p.
101385
.
37.
Sheikhnejad
,
Y.
, and
Gandjalikhan-Nassab
,
S. A.
,
2021
, “
Enhancement of Solar Chimney Performance by Passive Vortex Generator
,”
Renew. Energy
,
169
, pp.
437
450
.
38.
Zamora
,
B.
,
2022
, “
Morphological Comparative Assessment of a Rooftop Solar Chimney Through Numerical Modeling
,”
Int. J. Mech. Sci.
,
227
, p.
107441
.
39.
Wilcox
,
D. C.
,
2008
, “
Formulation of the kω Turbulence Model Revisited
,”
AIAA J.
,
46
, pp.
2823
2838
.
40.
Spalding
,
D. B.
,
2013
, “
Trends, Tricks and Try-Ons in CFD/CHT
,”
Adv. Heat Transfer
,
45
, pp.
1
78
.
41.
Montiel
,
M.
,
Hinojosa
,
J.
, and
Estrada
,
C. A.
,
2012
, “
Numerical Study of Heat Transfer by Natural Convection and Surface Thermal Radiation in an Open Cavity Receiver
,”
Sol. Energy
,
86
(
4
), pp.
1118
1128
.
42.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme V. A Second Order Sequel to Gadunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
43.
Gan
,
G.
,
2010
, “
Impact of Computational Domain on the Prediction of Buoyancy-Driven Ventilation Cooling
,”
Build. Environ.
,
45
(
5
), pp.
1173
1183
.
44.
Chen
,
Z. D.
,
Bandopadhayay
,
P.
,
Helldorsson
,
J.
,
Byrjalsen
,
C.
,
Heiselberg
,
P.
, and
Li
,
Y.
,
2003
, “
An Experimental Investigation of a Solar Chimney Model With Uniform Wall Heat Flux
,”
Build. Environ.
,
38
(
7
), pp.
893
906
.
45.
Zamora
,
B.
,
2021
, “
Determining Correlations for Solar Chimneys in Buildings With Wind Interference: A Numerical Approach
,”
Sustain. Energy Technol. Assess.
,
48
, p.
101662
.
46.
Cheng
,
X.
, and
Müller
,
U.
,
1998
, “
Turbulent Natural Convection Coupled With Thermal Radiation in Large Vertical Channels With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1681
1692
.
47.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
123
160
.
48.
Nguyen
,
Y. Q.
, and
Nguyen
,
V. T.
,
2022
, “
Characterizing the Induced Flow Through the Cavity of a Wall Solar Chimney Under the Effects of the Opening Heights
,”
J. Build. Phys.
,
46
(
5
), pp.
630
653
.
49.
Nguyen
,
Y. Q.
, and
Wells
,
J. C.
,
2020
, “
A Numerical Study on Induced Flowrate and Thermal Efficiency of a Solar Chimney With Horizontal Absorber Surface for Ventilation of Building
,”
J. Build. Eng.
,
28
, p.
101050
.
50.
Shi
,
J.
,
Hu
,
J.
,
Schafer
,
S. R.
, and
Chen
,
C. L.
,
2014
, “
Numerical Study of Heat Transfer Enhancement of Channel Via Vortex-Induced Vibration
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
838
845
.
51.
Zavala-Guillén
,
I.
,
Xamán
,
J.
,
Hernández-Pérez
,
I.
,
Hernández-López
,
I.
,
Jiménez-Xamán
,
C.
,
Moreno-Bernal
,
P.
, and
Sauceda
,
D.
,
2019
, “
Ventilation Potential of an Absorber-Partitioned Air Channel Solar Chimney for Diurnal Use Under Mexican Climate Conditions
,”
Appl. Therm. Eng.
,
149
, pp.
807
821
.
You do not currently have access to this content.