Abstract

Of the 33 global megacities, 10 were situated in South Asia. Extreme heat waves have become an annual phenomenon due to climate change in South Asian megacities, causing severe health issues and even deaths. In this study, we evaluated 29 years (1990–2019) of historical data on heat stress in ten selected megacities (existing and prospective)—New Delhi, Dhaka, Mumbai, Kolkata, Ahmedabad, Chennai, Bengaluru, Hyderabad, Chittagong, and Pune—in India and Bangladesh. We used heat index (HI) and environmental stress index (ESI) analyses to evaluate stress and vulnerability. Our results showed New Delhi, Mumbai, Kolkata, Ahmedabad, and Chennai in India; Dhaka and Chittagong in Bangladesh were already experiencing an elevated number of hours of “danger” levels of heat stress, which may lead to heat cramps, exhaustion, stroke, and even death. Furthermore, the frequency of “danger” levels of heat stress and vulnerable levels of ESI has increased significantly since 2011 in the selected megacities, which elevated the heat-related vulnerability among the millions of inhabitants in terms of work hours lost for light, moderate, and heavy work due to heat stress. The vulnerable population in the studied megacities might have to reduce annual work hours by 0.25–860.6 h (light work), 43–1595.9 h (moderate work), and 291–2402 h (heavy work) due to extreme heat in 1990–2019. We also discussed the implication of the work-hour loss on productivity, income, gross domestic product, and sustainable development goal progress because of heat stress and its causes and suggested recommendations to reduce its impact.

References

1.
WB
,
2023
, “Urban Population (% of Total Population),” World Bank. https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS, Accessed May 5, 2023
2.
WB
,
2023
, “Population, Total,” World Bank. https://data.worldbank.org/indicator/SP.POP.TOTL, Accessed May 5, 2023.
3.
UN
,
2018
, “
68% of the World Population Projected to Live in Urban Areas by 2050, Says UN
,” United Nations. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html#:∼:text=Today%2C%2055%25%20of%20the%20world's,increase%20to%2068%25%20by%202050, Accessed May 6, 2023.
4.
UN
,
2023
, “World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100,” United Nations. https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100, Accessed May 5, 2023.
5.
EU, ILO, FAO, OECD, UN-Habitat, World Bank
,
2020
, “A Recommendation on the Method to Delineate Cities, Urban and Rural Areas for International Statistical Comparisons,” UN Statistical Commission.
6.
UN
,
2018
, “The World’s Cities in 2018—Data Booklet,” United Nations.
7.
Kraas
,
F.
, and
Mertins
,
G.
,
2014
, “Megacities and Global Change,”
Megacities: Our Global Urban Future
,
F.
Kraas
,
S.
Aggarwal
,
M.
Coy
, and
G.
Mertins
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
1
6
.
8.
Wu
,
H.
,
2016
, “Mercury Rising: India Records Its Highest Temperature Ever,” CNN. https://edition.cnn.com/2016/05/20/asia/india-record-temperature/index.html, Accessed May 5, 2023.
9.
Metoffice
,
2022
, “Record High Temperatures Verified,” Met Office. https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2022/record-high-temperatures-verified, Accessed May 5, 2023.
10.
bdnews24
,
2023
, “Temperature Hits 43 Degrees Celsius in Bangladesh,” BD News 24. https://bdnews24.com/bangladesh/9fo6ipzp3o#:∼:text=The%20highest%20temperature%20on%20record,May%2015%2C%201972%20in%20Rajshahi, Accessed May 5, 2023.
11.
Carbon Brief
,
2022
, “Mapped: How Climate Change Affects Extreme Weather Around the World,” Carbon Brief. https://www.carbonbrief.org/mapped-how-climate-change-affects-extreme-weather-around-the-world/, Accessed May 5, 2023.
12.
IPCC
,
2022
, “
Climate Change 2022: Impacts, Adaptation, and Vulnerability
,” Cambridge University Press.
14.
Ebi
,
K. L.
,
Capon
,
A.
,
Berry
,
P.
,
Broderick
,
C.
,
de Dear
,
R.
,
Havenith
,
G.
,
Honda
,
Y.
, et al
,
2021
, “
Hot Weather and Heat Extremes: Health Risks
,”
Lancet
,
398
(
10301
), pp.
698
708
.
15.
Carter
,
S.
,
Field
,
E.
,
Oppermann
,
E.
, and
Brearley
,
M.
,
2020
, “
The Impact of Perceived Heat Stress Symptoms on Work-Related Tasks and Social Factors: A Cross-Sectional Survey of Australia's Monsoonal North
,”
Appl. Ergon.
,
82
, p.
102918
.
16.
Perera
,
A.
,
Nik
,
V. M.
,
Chen
,
D.
,
Scartezzini
,
J.-L.
, and
Hong
,
T.
,
2020
, “
Quantifying the Impacts of Climate Change and Extreme Climate Events on Energy Systems
,”
Nat. Energy
,
5
(
2
), pp.
150
159
.
17.
Debnath
,
K. B.
,
Jenkins
,
D. P.
,
Patidar
,
S.
, and
Peacock
,
A. D.
,
2020
, “
Understanding Residential Occupant Cooling Behaviour Through Electricity Consumption in Warm-Humid Climate
,”
Buildings
,
10
(
4
), p.
78
.
18.
IEA
,
2019
, “Energy Efficiency: Cooling,” International Energy Agency. https://www.iea.org/topics/energyefficiency/buildings/cooling/, Accessed March 21, 2022.
19.
GoI
,
2015
, “India Energy Security Scenarios 2047,” Government of India. http://iess2047.gov.in.
20.
Lohrmann
,
A.
,
Farfan
,
J.
,
Caldera
,
U.
,
Lohrmann
,
C.
, and
Breyer
,
C.
,
2019
, “
Global Scenarios for Significant Water Use Reduction in Thermal Power Plants Based on Cooling Water Demand Estimation Using Satellite Imagery
,”
Nat. Energy
,
4
(
12
), pp.
1040
1048
.
21.
Santamouris
,
M.
,
2020
, “
Recent Progress on Urban Overheating and Heat Island Research. Integrated Assessment of the Energy, Environmental, Vulnerability and Health Impact. Synergies With the Global Climate Change
,”
Energy Build.
,
207
, p.
109482
.
22.
Paul
,
R.
, and
Varadhan
,
S.
,
2023
, “Bangladesh Suffers Widespread Power Outages During Relentless Heat,” Reuters. https://www.reuters.com/world/asia-pacific/bangladesh-suffers-widespread-power-outages-during-relentless-heat-2023-04-20/, Accessed May 5, 2023.
23.
Somanathan
,
E.
,
Somanathan
,
R.
,
Sudarshan
,
A.
, and
Tewari
,
M.
,
2021
, “
The Impact of Temperature on Productivity and Labor Supply: Evidence From Indian Manufacturing
,”
J. Pol. Econ.
,
129
(
6
), pp.
1797
1827
.
24.
WB, GFDRR, CIF
,
2011
, “Vulnerability, Risk Reduction, and Adaptation to Climate Change: Bangladesh,” World Bank, Global Facility for Disaster Reduction and Recovery, Climate Investment Fund. https://climateknowledgeportal.worldbank.org/sites/default/files/2018-10/wb_gfdrr_climate_change_country_profile_for_BGD.pdf, Accessed May 6, 2023.
25.
Aryal
,
J. P.
,
Sapkota
,
T. B.
,
Khurana
,
R.
,
Khatri-Chhetri
,
A.
,
Rahut
,
D. B.
, and
Jat
,
M. L.
,
2020
, “
Climate Change and Agriculture in South Asia: Adaptation Options in Smallholder Production Systems
,”
Environ. Dev. Sustain.
,
22
(
6
), pp.
5045
5075
.
26.
Azhar
,
G.
,
Saha
,
S.
,
Ganguly
,
P.
,
Mavalankar
,
D.
, and
Madrigano
,
J.
,
2017
, “
Heat Wave Vulnerability Mapping for India
,”
Int. J. Environ. Res. Public Health
,
14
(
4
), p.
357
.
27.
Raja
,
D. R.
,
Hredoy
,
M. S. N.
,
Islam
,
M. K.
,
Islam
,
K. A.
, and
Adnan
,
M. S. G.
,
2021
, “
Spatial Distribution of Heatwave Vulnerability in a Coastal City of Bangladesh
,”
Environ. Challenges
,
4
, p.
100122
.
28.
Dewan
,
A.
,
Kiselev
,
G.
,
Botje
,
D.
,
Mahmud
,
G. I.
,
Bhuian
,
M. H.
, and
Hassan
,
Q. K.
,
2021
, “
Surface Urban Heat Island Intensity in Five Major Cities of Bangladesh: Patterns, Drivers and Trends
,”
Sustain. Cities Soc.
,
71
, p.
102926
.
29.
Sharma
,
A.
,
Andhikaputra
,
G.
, and
Wang
,
Y.-C.
,
2022
, “
Heatwaves in South Asia: Characterisation, Consequences on Human Health, and Adaptation Strategies
,”
Atmosphere
,
13
(
5
), p.
734
.
30.
Tawsif
,
S.
,
Alam
,
M. S.
, and
Al-Maruf
,
A.
,
2022
, “
How Households Adapt to Heat Wave for Livable Habitat? A Case of Medium-Sized City in Bangladesh
,”
Curr. Res. Environ. Sustain.
,
4
, p.
100159
.
31.
Rashid
,
N.
,
Alam
,
J. M.
,
Chowdhury
,
M. A.
, and
Islam
,
S. L. U.
,
2022
, “
Impact of Landuse Change and Urbanisation on Urban Heat Island Effect in Narayanganj City, Bangladesh: A Remote Sensing-Based Estimation
,”
Environ. Challenges
,
8
, p.
100571
.
32.
Debnath
,
R.
,
Bardhan
,
R.
, and
Bell
,
M. L.
,
2023
, “
Lethal Heatwaves Are Challenging India's Sustainable Development
,”
PLOS Climate
,
2
(
4
), p.
e0000156
.
33.
Fay
,
T. H.
, and
Hardie
,
K. A.
,
2003
, “
Fahrenheit to Celsius: An Exploration in College Algebra
,”
Math. Comput. Educ.
,
37
(
2
), pp.
207
209
.
34.
Meteoblue
,
2023
, “Datasets,” Meteoblue. https://docs.meteoblue.com/en/meteo/data-sources/datasets#era5-era5t, Accessed August 8, 2023
35.
Rothfusz
,
L. P.
, and
Headquarters
,
N. S. R.
,
1990
, “The Heat Index Equation (Or, More Than You Ever Wanted to Know About Heat Index),” National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, Fort Worth, TX.
36.
gknxt
, “India Blank Outline Map,” https://gknxt.com/india_map/india_blank_outline_map/india_outline_blank_map/, Accessed April 20, 2023.
37.
Luo
,
M.
, and
Lau
,
N.-C.
,
2019
, “
Characteristics of Summer Heat Stress in China During 1979–2014: Climatology and Long-Term Trends
,”
Clim. Dyn.
,
53
(
9–10
), pp.
5375
5388
.
38.
Modarres
,
R.
,
Ghadami
,
M.
,
Naderi
,
S.
, and
Naderi
,
M.
,
2018
, “
Future Heat Stress Arising From Climate Change on Iran's Population Health
,”
Int. J. Biometeorol.
,
62
(
7
), pp.
1275
1281
.
39.
Choi
,
G.
, and
Lee
,
D. E.
,
2020
, “
Changing Human-Sensible Temperature in Korea Under a Warmer Monsoon Climate Over the Last 100 Years
,”
Int. J. Biometeorol.
,
64
(
5
), pp.
1
10
.
40.
Opitz-Stapleton
,
S.
,
Sabbag
,
L.
,
Hawley
,
K.
,
Tran
,
P.
,
Hoang
,
L.
, and
Nguyen
,
P. H.
,
2016
, “
Heat Index Trends and Climate Change Implications for Occupational Heat Exposure in Da Nang, Vietnam
,”
Clim. Serv.
,
2
, pp.
41
51
.
41.
NWS
,
2020
, “What is Heat Index?,” National Weather Service. https://www.weather.gov/ama/heatindex, Accessed 2020.
42.
Moran
,
D. S.
,
Pandolf
,
K. B.
,
Shapiro
,
Y.
,
Heled
,
Y.
,
Shani
,
Y.
,
Mathew
,
W.
, and
Gonzalez
,
R.
,
2001
, “
An Environmental Stress Index (ESI) as a Substitute for the Wet Bulb Globe Temperature (WBGT)
,”
J. Therm. Biol.
,
26
(
4–5
), pp.
427
431
.
43.
NIOSH
,
2016
,
Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments
,
National Institute for Occupational Safety and Health (NIOSH)
,
Cincinnati, OH
.
44.
Licker
,
R.
,
Dahl
,
K.
, and
Abatzoglou
,
J. T.
,
2022
, “
Quantifying the Impact of Future Extreme Heat on the Outdoor Work Sector in the United States
,”
Elem. Sci. Anth.
,
10
(
1
), p.
00048
.
45.
ECMWF
,
2023
, “ERA5: Data Documentation,” European Centre for Medium-Range Weather Forecasts. https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Accuracyanduncertainty, Accessed November 1, 2023.
46.
ECMWF
,
2023
, “ERA5: Uncertainty Estimation,” European Centre for Medium-Range Weather Forecasts. https://confluence.ecmwf.int/display/CKB/ERA5%3A+uncertainty+estimation#ERA5:uncertaintyestimation-(6)HowreliableistheERA5uncertaintyestimate?, Accessed November 1, 2023.
48.
ClimateCHIP
,
2022
, “Heat Index Comparisons,” https://www.climatechip.org/heat_index_comparisons.
49.
Venugopal
,
V.
,
Chinnadurai
,
J. S.
,
Lucas
,
R. A.
, and
Kjellstrom
,
T.
,
2016
, “
Occupational Heat Stress Profiles in Selected Workplaces in India
,”
Int. J. Environ. Res. Public Health
,
13
(
1
), p.
89
.
50.
Balakrishnan
,
K.
,
Ramalingam
,
A.
,
Dasu
,
V.
,
Chinnadurai Stephen
,
J.
,
Raj Sivaperumal
,
M.
,
Kumarasamy
,
D.
,
Mukhopadhyay
,
K.
,
Ghosh
,
S.
, and
Sambandam
,
S.
,
2010
, “
Case Studies on Heat Stress Related Perceptions in Different Industrial Sectors in Southern India
,”
Glob. Health Action
,
3
(
1
), p.
5635
.
51.
Lundgren
,
K.
,
Kuklane
,
K.
, and
Venugopal
,
V.
,
2014
, “
Occupational Heat Stress and Associated Productivity Loss Estimation Using the PHS Model (ISO 7933): A Case Study From Workplaces in Chennai, India
,”
Glob. Health Action
,
7
(
1
), p.
25283
.
52.
Ahasan
,
M. R.
,
1999
, “
Work-Related Problems in Metal Handling Tasks in Bangladesh: Obstacles to the Development of Safety and Health Measures
,”
Ergonomics
,
42
(
2
), pp.
385
396
.
53.
Sett
,
M.
, and
Sahu
,
S.
,
2014
, “
Effects of Occupational Heat Exposure on Female Brick Workers in West Bengal, India
,”
Glob. Health Action
,
7
(
1
), p.
21923
.
54.
Chinnadurai
,
J.
,
Venugopal
,
V.
,
Kumaravel
,
P.
, and
Paramesh
,
R.
,
2016
, “
Influence of Occupational Heat Stress on Labour Productivity–A Case Study From Chennai, India
,”
Int. J. Product. Perform. Manag.
,
65
(
2
), pp.
245
255
.
55.
Parsons
,
L. A.
,
Shindell
,
D.
,
Tigchelaar
,
M.
,
Zhang
,
Y.
, and
Spector
,
J. T.
,
2021
, “
Increased Labor Losses and Decreased Adaptation Potential in a Warmer World
,”
Nat. Commun.
,
12
(
1
), p.
7286
.
56.
Dash
,
S.
, and
Kjellstrom
,
T.
,
2011
, “
Workplace Heat Stress in the Context of Rising Temperature in India
,”
Curr. Sci.
,
101
(
4
), pp.
496
503
.
57.
Mavalankar
,
D.
,
Azhar
,
G. S.
,
Sarma
,
A.
,
Rajiva
,
A.
,
Thube
,
N.
,
Dholakia
,
H.
,
Hess
,
J.
, et al
,
2013
, “NRDC: Rising Temperatures, Deadly Threat—Recommendations to Prepare Outdoor Workers in Ahmedabad,” Natural Resources Defense Council, Ahmedabad.
58.
Dimitrova
,
A.
,
Ingole
,
V.
,
Basagana
,
X.
,
Ranzani
,
O.
,
Mila
,
C.
,
Ballester
,
J.
, and
Tonne
,
C.
,
2021
, “
Association Between Ambient Temperature and Heat Waves With Mortality in South Asia: Systematic Review and Meta-Analysis
,”
Environ. Int.
,
146
, p.
106170
.
59.
Talukder
,
B.
,
van Loon
,
G. W.
,
Hipel
,
K. W.
,
Chiotha
,
S.
, and
Orbinski
,
J.
,
2021
, “
Health Impacts of Climate Change on Smallholder Farmers
,”
One Health
,
13
, p.
100258
.
60.
Picciariello
,
A.
,
Colenbrander
,
S.
,
Bazaz
,
A.
, and
Roy
,
R.
,
2021
, “The Costs of Climate Change in India: A Review of the Climate-Related Risks Facing India, and Their Economic and Social Costs,”
ODI Literature Review
,
London
, .pp.
1
24
.
61.
Kim
,
E.
,
Henry
,
G.
, and
Jain
,
M.
,
2023
,
Urban Heat in South Asia: Integrating People and Place in Adapting to Rising Temperatures
,
World Bank
,
Washington, DC
.
62.
Kotharkar
,
R.
, and
Ghosh
,
A.
,
2021
, “
Review of Heat Wave Studies and Related Urban Policies in South Asia
,”
Urban Clim.
,
36
, p.
100777
.
63.
Nissan
,
H.
,
Muñoz
,
ÁG
, and
Mason
,
S. J.
,
2020
, “
Targeted Model Evaluations for Climate Services: A Case Study on Heat Waves in Bangladesh
,”
Clim. Risk Manag.
,
28
, p.
100213
.
64.
EPA
,
2023
, “Heat Island Effect,” U.S. Environmental Protection Agency. https://www.epa.gov/heatislands, Accessed May 10, 2023
65.
Founda
,
D.
, and
Santamouris
,
M.
,
2017
, “
Synergies Between Urban Heat Island and Heat Waves in Athens (Greece), During an Extremely Hot Summer (2012)
,”
Sci. Rep.
,
7
(
1
), p.
10973
.
66.
Chew
,
L. W.
,
Liu
,
X.
,
Li
,
X.-X.
, and
Norford
,
L. K.
,
2021
, “
Interaction Between Heat Wave and Urban Heat Island: A Case Study in a Tropical Coastal City, Singapore
,”
Atmos. Res.
,
247
, p.
105134
.
67.
Srikanth
,
K.
, and
Swain
,
D.
,
2022
, “
Urbanisation and Land Surface Temperature Changes Over Hyderabad, A Semi-Arid Mega City in India
,”
Remote Sens. Appl.: Soc. Environ.
,
28
, p.
100858
.
68.
Zou
,
Z.
,
Yan
,
C.
,
Yu
,
L.
,
Jiang
,
X.
,
Ding
,
J.
,
Qin
,
L.
,
Wang
,
B.
, and
Qiu
,
G.
,
2021
, “
Impacts of Land Use/Land Cover Types on Interactions Between Urban Heat Island Effects and Heat Waves
,”
Build. Environ.
,
204
, p.
108138
.
69.
Kumar
,
A.
,
Pandey
,
A.
, and
Khan
,
M.
,
2020
, “Urban Risk and Resilience to Climate Change and Natural Hazards: A Perspective From Million-Plus Cities on the Indian Subcontinent,”
Techniques for Disaster Risk Management and Mitigation
,
P. K.
Srivastava
,
S. K.
Singh
,
U. C.
Mohanty
, and
T.
Murty
, eds.,
Wiley Online Library
,
Hoboken, NJ
, pp.
33
46
.
70.
Jamei
,
E.
,
Ossen
,
D.
,
Seyedmahmoudian
,
M.
,
Sandanayake
,
M.
,
Stojcevski
,
A.
, and
Horan
,
B.
,
2020
, “
Urban Design Parameters for Heat Mitigation in Tropics
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110362
.
71.
Lu
,
L.
,
Fu
,
P.
,
Dewan
,
A.
, and
Li
,
Q.
,
2023
, “
Contrasting Determinants of Land Surface Temperature in Three Megacities: Implications to Cool Tropical Metropolitan Regions
,”
Sustain. Cities Soc.
,
92
, p.
104505
.
72.
Yuan
,
B.
,
Zhou
,
L.
,
Dang
,
X.
,
Sun
,
D.
,
Hu
,
F.
, and
Mu
,
H.
,
2021
, “
Separate and Combined Effects of 3D Building Features and Urban Green Space on Land Surface Temperature
,”
J. Environ. Manage.
,
295
, p.
113116
.
73.
Halder
,
B.
,
Bandyopadhyay
,
J.
, and
Banik
,
P.
,
2021
, “
Monitoring the Effect of Urban Development on Urban Heat Island Based on Remote Sensing and Geo-Spatial Approach in Kolkata and Adjacent Areas, India
,”
Sustain. Cities Soc.
,
74
, p.
103186
.
74.
Nawar
,
N.
,
Sorker
,
R.
,
Chowdhury
,
F. J.
, and
Rahman
,
M. M.
,
2022
, “
Present Status and Historical Changes of Urban Green Space in Dhaka City, Bangladesh: A Remote Sensing Driven Approach
,”
Environ. Challenges
,
6
, p.
100425
.
75.
Sathyakumar
,
V.
,
Ramsankaran
,
R.
, and
Bardhan
,
R.
,
2020
, “
Geospatial Approach for Assessing Spatiotemporal Dynamics of Urban Green Space Distribution Among Neighbourhoods: A Demonstration in Mumbai
,”
Urban For. Urban Green.
,
48
, p.
126585
.
76.
Jay
,
O.
,
Capon
,
A.
,
Berry
,
P.
,
Broderick
,
C.
,
de Dear
,
R.
,
Havenith
,
G.
,
Honda
,
Y.
, et al
,
2021
, “
Reducing the Health Effects of Hot Weather and Heat Extremes: From Personal Cooling Strategies to Green Cities
,”
Lancet
,
398
(
10301
), pp.
709
724
.
77.
Bach
,
A. J.
,
Palutikof
,
J. P.
,
Tonmoy
,
F. N.
,
Smallcombe
,
J. W.
,
Rutherford
,
S.
,
Joarder
,
A. R.
,
Hossain
,
M.
, and
Jay
,
O.
,
2023
, “
Retrofitting Passive Cooling Strategies to Combat Heat Stress in the Face of Climate Change: A Case Study of a Ready-Made Garment Factory in Dhaka, Bangladesh
,”
Energy Build.
,
286
, p.
112954
.
78.
Ioannou
,
L. G.
,
Tsoutsoubi
,
L.
,
Mantzios
,
K.
,
Gkikas
,
G.
,
Piil
,
J. F.
,
Dinas
,
P. C.
,
Notley
,
S. R.
,
Kenny
,
G. P.
,
Nybo
,
L.
, and
Flouris
,
A. D.
,
2021
, “
The Impacts of Sun Exposure on Worker Physiology and Cognition: Multi-country Evidence and Interventions
,”
Int. J. Environ. Res. Public Health
,
18
(
14
), p.
7698
.
79.
NRDC
,
2022
,
Expanding Heat Resilience Across India: Heat Action Plan Highlights 2022
,
Natural Resources Defense Council
,
New York
.
80.
Pillai
,
A. V.
, and
Dalal
,
T.
,
2023
,
How Is India Adapting to Heatwaves?: An Assessment of Heat Action Plans With Insights for Transformative Climate Action
,
Centre for Policy Research (CPR)
,
New Delhi
.
81.
Soyeon
,
K.
,
Sang-Yub
,
K.
,
Jongmin
,
O.
,
Yeora
,
C.
,
Jongchul
,
P.
,
Daesoo
,
K.
, and
Young-Min
,
K.
,
2020
, “
Effects of the 2018 Heat Wave on Health in the Elderly: Implications for Adaptation Strategies to Climate Change
,”
Environ. Anal. Health Toxicol.
,
35
(
4
), p.
e2020024-0
.
82.
He
,
C.
,
Liu
,
Z.
,
Wu
,
J.
,
Pan
,
X.
,
Fang
,
Z.
,
Li
,
J.
, and
Bryan
,
B. A.
,
2021
, “
Future Global Urban Water Scarcity and Potential Solutions
,”
Nat. Commun.
,
12
(
1
), p.
4667
.
83.
Mishra
,
V.
,
Thirumalai
,
K.
,
Jain
,
S.
, and
Aadhar
,
S.
,
2021
, “
Unprecedented Drought in South India and Recent Water Scarcity
,”
Environ. Res. Lett.
,
16
(
5
), p.
054007
.
84.
ET
,
2023
, “Govt Directs States to Reschedule Working Hours as Heat Wave Worsens Across India,” The Economic Times. https://economictimes.indiatimes.com/news/economy/policy/govt-directs-states-to-reschedule-working-hours-as-heat-wave-worsens-across-india/articleshow/99581803.cms?from=mdr, Accessed May 10, 2023.
85.
Wong
,
N. H.
,
Tan
,
C. L.
,
Kolokotsa
,
D. D.
, and
Takebayashi
,
H.
,
2021
, “
Greenery as a Mitigation and Adaptation Strategy to Urban Heat
,”
Nat. Rev. Earth Environ.
,
2
(
3
), pp.
166
181
.
86.
Priya
,
U. K.
, and
Senthil
,
R.
,
2021
, “
A Review of the Impact of the Green Landscape Interventions on the Urban Microclimate of Tropical Areas
,”
Build. Environ.
,
205
, p.
108190
.
87.
Liu
,
Y.
,
Gao
,
Y.
,
Zhuang
,
C.
,
Shi
,
D.
,
Xu
,
Y.
,
Guan
,
J.
, and
Di
,
Y.
,
2023
, “
Optimisation of Top-Floor Rooms Coupling Cool Roofs, Natural Ventilation and Solar Shading for Residential Buildings in Hot-Summer and Warm-Winter Zones
,”
J. Build. Eng.
,
66
, p.
105933
.
88.
EPA
,
2023
, “What is Green Infrastructure?,” United States Environmental Protection Agency. https://www.epa.gov/green-infrastructure/what-green-infrastructure, Accessed May 11, 2023.
89.
Norton
,
B. A.
,
Coutts
,
A. M.
,
Livesley
,
S. J.
,
Harris
,
R. J.
,
Hunter
,
A. M.
, and
Williams
,
N. S.
,
2015
, “
Planning for Cooler Cities: A Framework to Prioritise Green Infrastructure to Mitigate High Temperatures in Urban Landscapes
,”
Landsc. Urban Plan.
,
134
, pp.
127
138
.
90.
Iungman
,
T.
,
Cirach
,
M.
,
Marando
,
F.
,
Barboza
,
E. P.
,
Khomenko
,
S.
,
Masselot
,
P.
,
Quijal-Zamorano
,
M.
, et al
,
2023
, “
Cooling Cities Through Urban Green Infrastructure: A Health Impact Assessment of European Cities
,”
Lancet
,
401
(
10376
), pp.
577
589
.
91.
Hostetler
,
M.
,
Allen
,
W.
, and
Meurk
,
C.
,
2011
, “
Conserving Urban Biodiversity? Creating Green Infrastructure Is Only the First Step
,”
Landsc. Urban Plan.
,
100
(
4
), pp.
369
371
.
92.
Kleerekoper
,
L.
,
Van Esch
,
M.
, and
Salcedo
,
T. B.
,
2012
, “
How to Make a City Climate-Proof, Addressing the Urban Heat Island Effect
,”
Resour. Conserv. Recycl.
,
64
, pp.
30
38
.
93.
Xia
,
T.
,
Nitschke
,
M.
,
Zhang
,
Y.
,
Shah
,
P.
,
Crabb
,
S.
, and
Hansen
,
A.
,
2015
, “
Traffic-Related Air Pollution and Health Co-Benefits of Alternative Transport in Adelaide, South Australia
,”
Environ. Int.
,
74
, pp.
281
290
.
94.
Debnath
,
K. B.
, and
Jenkins
,
D. P.
,
2022
, “Effect of Building Fabric on the Electricity Demand for Space Cooling for Attaining Thermal Comfort in a South Indian Community Building,”
Sustainable Energy Development and Innovation: Selected Papers From the World Renewable Energy Congress (WREC) 2020
,
A.
Sayigh
, ed.,
Springer
,
New York
, pp.
849
856
.
95.
Hamel
,
P.
,
Guerry
,
A.
,
Polasky
,
S.
,
Han
,
B.
,
Douglass
,
J.
,
Hamann
,
M.
,
Janke
,
B.
, et al
,
2021
, “
Mapping the Benefits of Nature in Cities With the InVEST Software
,”
npj Urban Sustain.
,
1
(
1
), p.
25
.
96.
Rashid
,
S. F.
,
Gani
,
S.
, and
Sarker
,
M.
,
2013
, “Urban Poverty, Climate Change and Health Risks for Slum Dwellers in Bangladesh,”
Climate Change Adaptation Actions in Bangladesh
, R. Shaw, ed., Springer, Tokyo, pp.
51
70
.
97.
Sarker
,
M. S. H.
,
2022
, “
Assessing Levels of Migrant-Friendliness in the Context of Vulnerability to Climate Variability, Change and Environmental Hazard: A Comparison of Two Different-Sized Cities
,”
Int. J. Disaster Risk Reduct.
,
68
, p.
102525
.
98.
Alam
,
S.
,
Adnan
,
Z. H.
,
Baten
,
M. A.
, and
Bag
,
S.
,
2022
, “
Assessing Vulnerability of Informal Floating Workers in Bangladesh Before and During COVID-19 Pandemic: A Multi-method Analysis
,”
Benchmarking: Int. J.
,
29
(
5
), pp.
1677
1702
.
99.
D.
Eckstein
,
V.
Künzel
,
L.
Schäfer
and
M.
Winges
,
Global Climate Risk Index 2020
,
Germanwatch
,
Bonn, Germany
.
You do not currently have access to this content.