Abstract

Solar fuels are proven to be promising candidates for thermochemical energy storage. However, the transient nature of solar radiation is an obstacle to maintaining a stable operational temperature inside a solar reactor. To overcome this challenge, the temperature of a solar reactor can be regulated by controlling the incoming solar radiation or the feedstock flowrate inside the reactor. In this work, a combined proportional integral derivative (PID) controller is implemented to regulate the temperature inside a high-temperature tubular solar reactor with counter-current flowing gas/particles. The control model incorporates two control systems to regulate incoming solar radiation and gas flow simultaneously. The design of the controller is based on a reduced-order numerical model of a high-temperature tubular solar reactor that is vertically oriented with an upward gas flow and downward particle flow. The reactor receives heat circumferentially through its wall over a finite segment of its length. Formulation of the heat transfer model is presented by applying the energy balance for the reactor tube and considering heat and mass transfer inside. A set of governing differential equations are solved numerically by using the finite volume method to obtain reactor wall, particles, and gas temperatures along the reactor length with various boundary conditions. Simulation results are used to tune the PID controller parameters by utilizing the Ziegler–Nichols tuning method. Both the simulation results and the controller performance are visualized on the labview platform. The controller is challenged to track different temperature setpoints with different scenarios of transient solar radiation. The performance of the PID controller was compared to experimental results obtained from an industrial PID controller embedded in a 7 kW electric furnace. Results show that the combined PID controller is successful in maintaining a stable temperature inside the reactor by regulating the incoming solar radiation and the flowrate via small steady-state error and reasonable settling time and overshoot.

References

1.
Farulla
,
G.
,
Cellura
,
M.
,
Guarino
,
F.
, and
Ferraro
,
M.
,
2020
, “
A Review of Thermochemical Energy Storage Systems for Power Grid Support
,”
Appl. Sci.
,
10
(
9
), p.
3142
.
2.
Enescu
,
D.
,
Chicco
,
G.
,
Porumb
,
R.
, and
Seritan
,
G.
,
2020
, “
Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends
,”
Energies
,
13
(
2
), p.
340
.
3.
Prieto
,
C.
,
Cooper
,
P.
,
Fernández
,
A. I.
, and
Cabeza
,
L. F.
,
2016
, “
Review of Technology: Thermochemical Energy Storage for Concentrated Solar Power Plants
,”
Renewble Sustainable Energy Rev.
,
60
, pp.
909
929
.
4.
Rönnebro
,
E. C. E.
,
Whyatt
,
G.
,
Powell
,
M.
,
Westman
,
M.
,
Zheng
,
F.
, and
Fang
,
Z. Z.
,
2015
, “
Metal Hydrides for High-Temperature Power Generation
,”
Energies
,
8
(
8
), pp.
8406
8430
.
5.
Bayon
,
A.
,
Bader
,
R.
,
Jafarian
,
M.
,
Fedunik-Hofman
,
L.
,
Sun
,
Y.
,
Hinkley
,
J.
,
Miller
,
S.
, and
Lipiński
,
W.
,
2018
, “
Techno-Economic Assessment of Solid–Gas Thermochemical Energy Storage Systems for Solar Thermal Power Applications
,”
Energy
,
149
, pp.
473
484
.
6.
Hutchings
,
K. N.
,
Wilson
,
M.
,
Larsen
,
P. A.
, and
Cutler
,
R. A.
,
2006
, “
Kinetic and Thermodynamic Considerations for Oxygen Absorption/Desorption Using Cobalt Oxide
,”
Solid State Ionics
,
177
(
1–2
), pp.
45
51
.
7.
Karagiannakis
,
G.
,
Pagkoura
,
C.
,
Halevas
,
E.
,
Baltzopoulou
,
P.
, and
Konstandopoulos
,
A. G.
,
2016
, “
Cobalt/Cobaltous Oxide Based Honeycombs for Thermochemical Heat Storage in Future Concentrated Solar Power Installations: Multi-Cyclic Assessment and Semi-quantitative Heat Effects Estimations
,”
Sol. Energy
,
133
, pp.
394
407
.
8.
Randhir
,
K.
,
King
,
K.
,
Rhodes
,
N.
,
Li
,
L.
,
Hahn
,
D.
,
Mei
,
R.
,
AuYeung
,
N.
, and
Klausner
,
J.
,
2019
, “
Magnesium–Manganese Oxides for High Temperature Thermochemical Energy Storage
,”
J. Energy Storage
,
21
, pp.
599
610
.
9.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
Aperture Size Adjustment Using Model Based Adaptive Control Strategy to Regulate Temperature in a Solar Receiver
,”
Sol. Energy
,
159
, pp.
20
36
.
10.
Zoller
,
S.
,
Koepf
,
E.
,
Roos
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Heat Transfer Model of a 50 kW Solar Receiver–Reactor for Thermochemical Redox Cycling Using Cerium Dioxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021014
.
11.
Lichty
,
P.
,
Perkins
,
C.
,
Woodruff
,
B.
,
Bingham
,
C.
, and
Weimer
,
A.
,
2010
, “
Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011012
.
12.
Sedighi
,
M.
,
Taylor
,
R. A.
,
Lake
,
M.
,
Rose
,
A.
,
Izadgoshasb
,
I.
, and
Vasquez Padilla
,
R.
,
2020
, “
Development of a Novel High-Temperature, Pressurised, Indirectly-Irradiated Cavity Receiver
,”
Energy Convers. Manage.
,
204
, p.
112175
.
13.
Li
,
X.
,
Li
,
R.
,
Chang
,
H.
,
Zeng
,
L.
,
Xi
,
Z.
, and
Li
,
Y.
,
May 2022
, “
Numerical Simulation of a Cavity Receiver Enhanced With Transparent Aerogel for Parabolic Dish Solar Power Generation
,”
Energy
,
246
, p.
123358
.
14.
Kuruneru
,
S. T. W.
,
Kim
,
J. S.
,
Soo Too
,
Y. C.
, and
Potter
,
D.
,
2022
, “
Discrete Particle Modelling of Buoyant Convective Particle-Laden Air Flow in Solar Cavity Free-Falling Particle Receivers
,”
Energy Reports
,
8
, pp.
3902
3918
.
15.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
An Advanced Modeling and Experimental Study to Improve Temperature Uniformity of a Solar Receiver
,”
Energy
,
165
(
Part B
), pp.
984
998
.
16.
Wang
,
B.
,
Li
,
L.
,
Pottas
,
J. J.
,
Bader
,
R.
,
Kreider
,
P. B.
,
Wheeler
,
V. M.
, and
Lipiński
,
W.
,
2020
, “
Thermal Model of a Solar Thermochemical Reactor for Metal Oxide Reduction
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051002
.
17.
Wyttenbach
,
J.
,
Bougard
,
J.
,
Descy
,
G.
,
Skrylnyk
,
O.
,
Courbon
,
E.
,
Frère
,
M.
, and
Bruyat
,
F.
,
2018
, “
Performances and Modelling of a Circular Moving bed Thermochemical Reactor for Seasonal Storage
,”
Appl. Energy
,
230
, pp.
803
815
.
18.
Guo
,
Z.
,
Yang
,
J.
,
Tan
,
Z.
,
Tian
,
X.
, and
Wang
,
Q.
,
2021
, “
Numerical Study on Gravity-Driven Granular Flow Around Tube Out-Wall: Effect of Tube Inclination on the Heat Transfer
,”
Int. J. Heat Mass Transfer
,
174
, p.
121296
.
19.
Huang
,
W.
,
Korba
,
D.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
Thermochemical Reduction Modeling in a High-Temperature Moving-Bed Reactor for Energy Storage: 1D Model
,”
Appl. Energy
,
306
(
Part B
), p.
118009
.
20.
Korba
,
D.
,
Huang
,
W.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
A Continuum Model for Heat and Mass Transfer in Moving-Bed Reactors for Thermochemical Energy Storage
,”
Appl. Energy
,
313
, p.
118842
.
21.
Mészáros
,
A.
,
Rusnák
,
A.
, and
Fikar
,
M.
,
1999
, “
Adaptive Neural PID Control Case Study: Tubular Chemical Reactor
,”
Comput. Chem. Eng.
,
23
, pp.
S847
S850
.
22.
Petrasch
,
J.
,
Osch
,
P.
, and
Steinfeld
,
A.
,
2009
, “
Dynamics and Control of Solar Thermochemical Reactors
,”
Chem. Eng. J.
,
145
(
3
), pp.
362
370
.
23.
Mokhtar
,
M.
,
Zahler
,
C.
, and
Stieglitz
,
R.
,
2022
, “
Control of Concentrated Solar Direct Steam Generation Collectors for Process Heat Applications
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011005
.
24.
Al Sahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Forward Feedback Control Scheme for a Solar Thermochemical Moving Bed Counter-Current Flow Reactor
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031004
.
25.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Heat Transfer of Gas Flow Through a Packed Bed
,”
Chem. Eng. Sci.
,
61
(
11
), pp.
3532
3542
.
26.
Yuen
,
M. C.
, and
Chen
,
L. W.
,
May 1978
, “
Heat-Transfer Measurements of Evaporating Liquid Droplets
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
537
542
.
27.
Sullivan
,
W. N.
, and
Sabersky
,
R. H.
,
1975
, “
Heat Transfer to Flowing Granular Media
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
97
107
.
28.
Stenberg
,
V.
,
Sköldberg
,
V.
,
Öhrby
,
L.
, and
Rydén
,
M.
,
2019
, “
Evaluation of Bed-to-Tube Surface Heat Transfer Coefficient for a Horizontal Tube in Bubbling Fluidized Bed at High Temperature
,”
Powder Technol.
,
352
, pp.
488
500
.
29.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
3
), pp.
291
304
.
30.
Touloukian
,
Y. S.
, and
Buyco
,
E. H.
,
1970
,
Specific Heat: Nonmetallic Solids
,
IFI/Plenum
,
New York
.
31.
Hayes
,
M.
,
Masoomi
,
F.
,
Schimmels
,
P.
,
Randhir
,
K.
,
Klausner
,
J.
, and
Petrasch
,
J.
,
2021
, “
Ultra-High Temperature Thermal Conductivity Measurements of a Reactive Magnesium Manganese Oxide Porous Bed Using a Transient Hot Wire Method
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
10
), p.
104502
.
32.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1993
, “
Optimum Settings for Automatic Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
2B
), pp.
220
222
.
33.
García
,
J.
,
Chean Soo Too
,
Y.
,
Vasquez Padilla
,
R.
,
Beath
,
A.
,
Kim
,
J.-S.
, and
Sanjuan
,
M. E.
,
2018
, “
Multivariable Closed Control Loop Methodology for Heliostat Aiming Manipulation in Solar Central Receiver Systems
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031010
.
34.
Kumar
,
N.
, and
Sharma
,
A.
,
2022
, “
Design and Analysis of Nonlinear Controller for a Standalone Photovoltaic System Using Lyapunov Stability Theory
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011003
.
You do not currently have access to this content.