Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Journal
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Aakash Shukla
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. May 2021, 4(2): 021002.
Paper No: NDE-20-1024
Published Online: October 9, 2020
Abstract
In the present study, the dynamic behavior of the last stage low-pressure steam turbine blade with fir-tree root at different conditions of blade root flank faces and their interfaces with rotor groove have been analyzed. Modal analysis has been done using a finite element approach to evaluate natural frequencies and evaluation of Campbell diagram generated under these conditions. For this, both healthy and defective blade have been taken. Since the variable crack size of fir-tree root flank has been taken, the excitation pattern has been evaluated due to stiffness variation of the cracked blade. This analysis provides the basis of excitation pattern of cracked blades due to inherent character and critical stressed zone. The outcome of this study forms the guidelines and checks during the fitting of blades in rotor assembly and its checks during health audit, overhaul, overspeed balancing test, and frequency turning.