Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-3 of 3
Keywords: composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Mohammadreza Bahadori, Emine Tekerek, Melvin Mathew, Mazur Krzysztof, Brian Wisner, Antonios Kontsos
Article Type: Research Papers
ASME J Nondestructive Evaluation. August 2021, 4(3): 031002.
Paper No: NDE-20-1049
Published Online: February 12, 2021
...Mohammadreza Bahadori; Emine Tekerek; Melvin Mathew; Mazur Krzysztof; Brian Wisner; Antonios Kontsos A novel failure model updating methodology is presented in this paper for composite materials. The innovation in the approach presented is found in both the experimental and computational methods...
Abstract
A novel failure model updating methodology is presented in this paper for composite materials. The innovation in the approach presented is found in both the experimental and computational methods used. Specifically, a dominant bottleneck in data-driven failure model development relates to the types of data inputs that could be used for model calibration or updating. To address this issue, nondestructive evaluation data obtained while performing mechanical testing at the laboratory scale are used in this paper to form a damage metric based on a series of processing steps that leverage raw sensing inputs and provide progressive failure curves that are then used to calibrate the damage initiation point computed by full-field three-dimensional finite element simulations of fiber-reinforced composite material that take into account both intra- and interlayer damage. Such curves defined based on nondestructive evaluation data are found to effectively monitor the progressive failure process, and therefore, they could be used as a way to form modeling inputs at different length scales.
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. August 2020, 3(3): 031109.
Paper No: NDE-19-1089
Published Online: April 15, 2020
...John T. Welter; Daniel M. Sparkman; John C. Aldrin; David Zainey; Tyler Lesthaeghe; Vicki Kramb Characterization of barely visible impact damage (BVID) in polymer matrix composites (PMCs) is necessary to use slow crack growth damage tolerance models and evaluate remaining life of PMC components...
Abstract
Characterization of barely visible impact damage (BVID) in polymer matrix composites (PMCs) is necessary to use slow crack growth damage tolerance models and evaluate remaining life of PMC components. Azimuthally scanned angled-beam pulse-echo ultrasound is investigated as a complimentary technique to normal incidence ultrasound inspection of BVID in PMCs to characterize delamination fields. It is found that there is a correlation between signals present in the azimuthally scanned angled-beam pulse-echo ultrasound C-scans and transverse cracks seen in X-ray computed tomography inspection. These transverse cracks are not readily identifiable as transverse cracks in normal incidence C-scan inspection.
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. February 2020, 3(1): 011002.
Paper No: NDE-19-1015
Published Online: October 15, 2019
...Robin James; Mohammad Faisal Haider; Victor Giurgiutiu; David Lilienthal The manufacturing process of carbon fiber reinforced polymer (CFRP) composite structures can introduce many characteristic defects and flaws such as fiber misorientation, fiber waviness, and wrinkling. Therefore, it becomes...
Abstract
The manufacturing process of carbon fiber reinforced polymer (CFRP) composite structures can introduce many characteristic defects and flaws such as fiber misorientation, fiber waviness, and wrinkling. Therefore, it becomes increasingly important to detect the presence of these defects at the earliest stages of development. Eddy current testing (ECT) is a nondestructive inspection (NDI) technique that has been proven quite effective in detection of damage in metallic structures. However, NDI of composite structures has mainly relied on other methods such as ultrasonic testing (UT) and X-ray to name a few and not much on ECT. In this paper, the authors explore the possibility of using ECT in NDI of CFRP composites by conducting simulations and experiments thereafter. This research is based on the fact that the CFRP displays some low-level electrical conductivity due to the inherent conductivity of the carbon fibers. This low-level conductivity may permit eddy current pathways to cause the flow of eddy currents in the CFRP composites that can be exploited for nondestructive damage detection. An invention disclosure describing our high-frequency ECT method has also been processed. First, the multiphysics finite element method (FEM) simulation was used to simulate the detection of various types of manufacturing flaws and operational damage in CFRP composites such as fiber misorientation, waviness, wrinkling, and so on. Thereafter, ECT experiments were conducted on CFRP specimens with various manufacturing flaws using the Eddyfi Reddy eddy current array (ECA) system.