Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-4 of 4
Echoes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. August 2020, 3(3): 031109.
Paper No: NDE-19-1089
Published Online: April 15, 2020
Abstract
Characterization of barely visible impact damage (BVID) in polymer matrix composites (PMCs) is necessary to use slow crack growth damage tolerance models and evaluate remaining life of PMC components. Azimuthally scanned angled-beam pulse-echo ultrasound is investigated as a complimentary technique to normal incidence ultrasound inspection of BVID in PMCs to characterize delamination fields. It is found that there is a correlation between signals present in the azimuthally scanned angled-beam pulse-echo ultrasound C-scans and transverse cracks seen in X-ray computed tomography inspection. These transverse cracks are not readily identifiable as transverse cracks in normal incidence C-scan inspection.
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. August 2020, 3(3): 031106.
Paper No: NDE-19-1068
Published Online: April 8, 2020
Abstract
Robust defect detection in the presence of grain noise originating from material microstructures is a challenging yet essential problem in ultrasonic non-destructive evaluation (NDE). In this paper, a novel method is proposed to suppress the gain noise and enhance the defect detection and imaging. The defect echo and grain noise are distinguished through analyzing the spatial location where the echo is originating from. This is achieved by estimation of the angle of arrival (AOA) of the returned echo and evaluation of the likelihood that the echo is reflected from the point where the array is focused or otherwise from the random reflectors like the grain boundaries. The method explicitly addresses the statistical models of the defect echoes and the spatial noise across the array aperture, as well as the correlation between the flaw signal and the interfering echoes; estimates the AOA and the likelihood in a dimension-reduced beam space via a linear transformation; and determines a weighting factor based on the mean likelihood. The factors are then normalized and utilized to correct and weigh the NDE images. Experiments on industrial samples of austenitic stainless steel and INCONEL Alloy 617 are conducted with a 5 MHz transducer array, and the results demonstrate that the grain noise is reduced by about 20 dB while the defect reflection is well retained, thus the great benefits of the method on enhanced defect detection and imaging in ultrasonic NDE are validated.
Journal Articles
Article Type: Research-Article
ASME J Nondestructive Evaluation. May 2019, 2(2): 021001.
Paper No: NDE-18-1030
Published Online: March 25, 2019
Abstract
This paper describes a new concept to monitor the temperature of water utilizing the acoustic resonance, which occurs when ultrasound passes through a thin layer. In the ultrasonic transmission system that comprises of the reflection plate, thin film, and water, the reflection coefficient of the ultrasound at the plate/film/water interface depends on the frequency and takes its minimum value at the resonant frequency. Notably, this is closely related to the acoustic impedance of the water; moreover, it is a known fact that the acoustic impedance of the water demonstrates temperature dependence. Against this background, the present study aims to develop a technique in order to monitor the temperature of water utilizing the aforementioned correlation between the reflection coefficient and water temperature. First, a theoretical model was developed to determine the acoustic impedance of water from the difference in the amplitude spectra of echoes reflected at the back of the plate in the cases both with and without the film. It was found that the ratio of the amplitude spectrum of the echo recorded in the case with the film to that in the case without the film clearly decreased with a drop in water temperature. From this, we obtained the equation for determining water temperature experimentally. Finally, the temperature of water, which was brought down by air or ice cooling, was monitored by the proposed method. It was found that the behavior of temperature determined by the proposed method was congruent with that which was measured by a thermocouple.
Journal Articles
Article Type: Research-Article
ASME J Nondestructive Evaluation. February 2018, 1(1): 011009.
Paper No: NDE-17-1062
Published Online: September 14, 2017
Abstract
The feasibility of utilizing focused ultrasonic waves for the nondestructive evaluation of porosity content in curved corner sections of carbon fiber reinforced plastic (CFRP) laminate structures is investigated numerically as well as experimentally. For this purpose, two-dimensional (2D) finite element simulations are carried out to clarify the wave propagation behavior and the reflection characteristics when the nonfocused or focused ultrasonic wave impinges on the corner section of unidirectional and quasi-isotropic CFRP laminates from the inner side via water. The corresponding reflection measurements are carried out for the CFRP corner specimens in the pulse-echo mode using nonfocusing, point-focusing, and line-focusing transducers. The numerical simulations and the experiments show that the use of focused ultrasonic waves is effective in obtaining clearly distinguishable surface and bottom echoes from the curved corner section of CFRP laminates. The influence of the porosity content on the reflection waveforms obtained with different types of transducers is demonstrated experimentally. The experimental results indicate that the porosity content of the CFRP corner section can be evaluated based on the amplitude ratio of the surface and bottom echoes obtained with focusing transducers, if the calibration relation is appropriately established for different ply stacking sequences.