Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-3 of 3
Dimensions
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. February 2021, 4(1): 011001.
Paper No: NDE-19-1041
Published Online: May 18, 2020
Abstract
Rolling bearings accomplishes a smoother force transmission between relative components of high production volume systems. An impending fault may cause system malfunction and its maturation lead to a catastrophic failure of the system that increases the possibility of unscheduled maintenance or an expensive shutdown. These critical states demand a robust failure diagnosis scheme for bearings. The present paper demonstrates a novel way to develop a dynamic model for the rotor-bearing system using dimensional analysis (DA) considering significant geometric, operating, and thermal parameters of the system. The vibration responses of faulty spherical roller bearings are investigated under various operating conditions for validation of the developed model. Multivariable regression analysis is performed to expose the potential of the approach in the detection of the bearing failure. Results obtained unveil the simple and reliable nature of the dynamic modeling using DA.
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. August 2020, 3(3): 031106.
Paper No: NDE-19-1068
Published Online: April 8, 2020
Abstract
Robust defect detection in the presence of grain noise originating from material microstructures is a challenging yet essential problem in ultrasonic non-destructive evaluation (NDE). In this paper, a novel method is proposed to suppress the gain noise and enhance the defect detection and imaging. The defect echo and grain noise are distinguished through analyzing the spatial location where the echo is originating from. This is achieved by estimation of the angle of arrival (AOA) of the returned echo and evaluation of the likelihood that the echo is reflected from the point where the array is focused or otherwise from the random reflectors like the grain boundaries. The method explicitly addresses the statistical models of the defect echoes and the spatial noise across the array aperture, as well as the correlation between the flaw signal and the interfering echoes; estimates the AOA and the likelihood in a dimension-reduced beam space via a linear transformation; and determines a weighting factor based on the mean likelihood. The factors are then normalized and utilized to correct and weigh the NDE images. Experiments on industrial samples of austenitic stainless steel and INCONEL Alloy 617 are conducted with a 5 MHz transducer array, and the results demonstrate that the grain noise is reduced by about 20 dB while the defect reflection is well retained, thus the great benefits of the method on enhanced defect detection and imaging in ultrasonic NDE are validated.
Journal Articles
Article Type: Research-Article
ASME J Nondestructive Evaluation. November 2018, 1(4): 041004.
Paper No: NDE-17-1116
Published Online: June 26, 2018
Abstract
Shockwave is a high pressure and short duration pulse that induce damage and lead to progressive collapse of the structure. The shock load excites high-frequency vibrational modes and causes failure due to large deformation in the structure. Shockwave experiments were conducted by imparting repetitive localized shock loads to create progressive damage states in the structure. Two-phase novel damage detection algorithm is proposed, that quantify and segregate perturbative damage from microscale damage. The first phase performs dimension reduction and damage state segregation using principal component analysis (PCA). In the second phase, the embedding dimension was reduced through empirical mode decomposition (EMD). The embedding parameters were derived using singular system analysis (SSA) and average mutual information function (AMIF). Based, on Takens theorem and embedding parameters, the response was represented in a multidimensional phase space trajectory (PST). The dissimilarity in the multidimensional PST was used to derive the damage sensitive features (DSFs). The DSFs namely: (i) change in phase space topology (CPST) and (ii) Mahalanobis distance between phase space topology (MDPST) are evaluated to quantify progressive damage states. The DSFs are able to quantify the occurrence, magnitude, and localization of progressive damage state in the structure. The proposed algorithm is robust and efficient to detect and quantify the evolution of damage state for extreme loading scenarios.