Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Delays
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
ASME J Nondestructive Evaluation. February 2021, 4(1): 011002.
Paper No: NDE-20-1009
Published Online: June 8, 2020
Abstract
Ultrasonic phased array (UPA) provides a powerful tool for nondestructive testing (NDT) of carbon fiber-reinforced plastic (CFRP). By the aid of full matrix capture (FMC) technique, the optimum resolution of anisotropic CFRP inspection could be achieved by the total focusing method (TFM). The directional dependence of ultrasonic velocity is one of the biggest challenges due to the anisotropy of CFRP. The objective of this research is to establish a joint method to estimate direction-dependent velocity and damage location of CFRP. To obtain group velocity without prior knowledge of neither theoretical calculation nor experimental determination, a limited angle range of the anisotropic velocity is first obtained by backwall reflection method (BRM), which is then extended by analyzing the relation between the time delay of backwall and side drilled hole (SDH) reflection. The effectiveness of the proposed method is experimentally demonstrated with UPA imaging of SDH in composite laminates.