Abstract

When stress in concrete exceeds certain threshold value, microcracks are nucleated, these microcracks can propagate and coalesce forming macrocracks, resulting in the gradual decay of the mechanical properties of concrete and eventual failure of the concrete structures. For safety concerns, one needs to develop suitable nondestructive testing methods capable of detecting past overloads of concrete structures during its service life. In this work, the stress-induced damage in concrete is monitored using ultrasonic techniques, exploiting the coupling between the stress level experienced by concrete and its wave propagation parameters. Cyclic compression tests with increasing maximum load level have been performed on specimens made of concrete with coarse-grained (CG) aggregates. Experimental results have been analyzed by two different ultrasonic methods—the linear and the nonlinear ultrasonic techniques. In linear ultrasonic technique, the stress level experienced by the specimens is related to the variations in signal amplitude and velocity of ultrasonic waves. In nonlinear ultrasonic method, the sideband peak count (SPC) technique is used for revealing the stress-induced damage corresponding to each load step. In comparison to linear ultrasonic parameters, the nonlinear ultrasonic parameter SPC-I appears to be more sensitive to the variations of the internal material structures during both loading and unloading phases. Moreover, the SPC technique has shown to be capable of identifying both the initial damage due to the evolution and nucleation of microcracks at the microscopic scale, and the subsequent damages induced by high overload, resulting in an irreversible degradation of the mechanical properties.

References

References
1.
Malhotra
,
V. M.
, and
Carino
,
N. J.
,
2003
,
Handbook on Nondestructive Testing of Concrete
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Broda
,
D.
,
Staszewski
,
W. J.
,
Martowicz
,
A.
,
Uhl
,
T.
, and
Silberschmidt
,
V. V.
,
2014
, “
Modelling of Nonlinear Crack-Wave Interactions for Damage Detection Based on Ultrasound—A Review
,”
J. Sound Vibr.
,
333
(
4
), pp.
1097
1118
.
3.
Payan
,
C.
,
Garnier
,
V.
, and
Moysan
,
J.
,
2010
, “
Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete
,”
Adv. Civ. Eng.
,
2010
, pp.
1
8
. 10.1155/2010/238472
4.
Bompan
,
K. F.
, and
Haach
,
V. G.
,
2018
, “
Ultrasonic Tests in the Evaluation of the Stress Level in Concrete Prisms Based on the Acoustoelasticity
,”
Constr. Build. Mater.
,
162
, pp.
740
750
. 10.1016/j.conbuildmat.2017.11.153
5.
Lillamand
,
I.
,
Chaix
,
J. F.
,
Ploix
,
M. A.
, and
Garnier
,
V.
,
2010
, “
Acoustoelastic Effect in Concrete Material Under Uni-Axial Compressive Loading
,”
NDT&E Int.
,
43
(
8
), pp.
655
660
. 10.1016/j.ndteint.2010.07.001
6.
Antonaci
,
P.
,
Bruno
,
C. L. E.
,
Gliozzi
,
A. S.
, and
Scalerandi
,
M.
,
2010
, “
Monitoring Evolution of Compressive Damage in Concrete With Linear and Nonlinear Ultrasonic Methods
,”
Cem. Concr. Res.
,
40
(
7
), pp.
1106
1113
. 10.1016/j.cemconres.2010.02.017
7.
Selleck
,
S. F.
,
Landis
,
E. N.
,
Peterson
,
M. L.
,
Shah
,
S. P.
, and
Achenbach
,
J. D.
,
1998
, “
Ultrasonic Investigation of Concrete With Distributed Damage
,”
ACI Mater. J.
,
95
(
1
), pp.
27
36
. 10.14359/349
8.
Popovics
,
S.
,
Rose
,
J. L.
, and
Popovics
,
J. S.
,
1990
, “
The Behaviour of Ultrasonic Pulses in Concrete
,”
Cem. Concr. Res.
,
20
(
2
), pp.
259
270
. 10.1016/0008-8846(90)90079-D
9.
Shah
,
A. A.
, and
Hirose
,
S.
,
2010
, “
Nonlinear Ultrasonic Investigation of Concrete Damaged Under Uniaxial Compression Step Loading
,”
J. Mater. Civ. Eng.
,
22
(
5
), pp.
476
484
. 10.1061/(asce)mt.1943-5533.0000050
10.
Yim
,
H. J.
,
Kwak
,
H. G.
, and
Kim
,
J. H.
,
2012
, “
Wave Attenuation Measurement Technique for Nondestructive Evaluation of Concrete
,”
Nondestr. Test. Eval.
,
27
(
1
), pp.
81
94
. 10.1080/10589759.2011.606319
11.
Shokouhi
,
P.
,
Zoëga
,
A.
, and
Wiggenhauser
,
H.
,
2010
, “
Nondestructive Investigation of Stress-Induced Damage in Concrete
,”
Adv. Civ. Eng.
,
2010
, pp.
1
9
. 10.1155/2010/740189
12.
Chaix
,
J. F.
,
Lillamand
,
I.
,
Ploix
,
M. A.
,
Garnier
,
V.
, and
Corneloup
,
G.
,
2008
, “
Study of Acoustoelasticity Behavior of Concrete Material Under Uniaxial Compression
,”
Proc. Mtgs. Acoust.
4
(
1
), p.
045014
. https://doi.org/10.1121/1.3008567
13.
Schurr
,
D. P.
,
Kim
,
J. Y.
,
Sabra
,
K. G.
, and
Jacobs
,
L. J.
,
2011
, “
Damage Detection in Concrete Using Coda Wave Interferometry
,”
NDT&E Int.
,
44
(
8
), pp.
728
735
. 10.1016/j.ndteint.2011.07.009
14.
Hafiz
,
A.
, and
Schumacher
,
T.
,
2018
, “
Monitoring of Stresses in Concrete Using Ultrasonic Coda Wave Comparison Technique
,”
J. Nondestruct. Eval.
,
37
(
4
). 10.1007/s10921-018-0527-8
15.
Kim
,
J.-Y.
,
Jacobs
,
L. J.
,
Qu
,
J.
, and
Littles
,
J. W.
,
2006
, “
Experimental Characterization of Fatigue Damage in a Nickel-Base Superalloy Using Nonlinear Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
120
(
3
), pp.
1266
1273
. 10.1121/1.2221557
16.
Shah
,
A. A.
, and
Ribakov
,
Y.
,
2009
, “
Non-Linear Ultrasonic Evaluation of Damaged Concrete Based on Higher Order Harmonic Generation
,”
Mater. Des.
,
30
(
10
), pp.
4095
4102
. 10.1016/j.matdes.2009.05.009
17.
Shah
,
A. A.
,
Ribakov
,
Y.
, and
Zhang
,
C.
,
2013
, “
Efficiency and Sensitivity of Linear and Non-Linear Ultrasonics to Identifying Micro and Macro-Scale Defects in Concrete
,”
Mater. Des.
,
50
, pp.
905
916
. 10.1016/j.matdes.2013.03.079
18.
Chen
,
X. J.
,
Kim
,
J. Y.
,
Kurtis
,
K. E.
,
Qu
,
J.
,
Shen
,
C. W.
, and
Jacobs
,
L. J.
,
2008
, “
Characterization of Progressive Microcracking in Portland Cement Mortar Using Nonlinear Ultrasonics
,”
NDT&E Int.
,
41
(
2
), pp.
112
118
. 10.1016/j.ndteint.2007.08.009
19.
Den Abeele
,
K. E. A. V.
,
Johnson
,
P. A.
, and
Sutin
,
A.
,
2000
, “
Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS)
,”
Res. Nondestruct. Eval.
,
12
(
1
), pp.
17
30
. 10.1080/09349840009409646
20.
Park
,
S. J.
,
Kim
,
G. J.
, and
Kwak
,
H. G.
,
2017
, “
Characterization of Stress-Dependent Ultrasonic Nonlinearity Variation in Concrete Under Cyclic Loading Using Nonlinear Resonant Ultrasonic Method
,”
Constr. Build. Mater.
,
145
, pp.
272
282
. 10.1016/j.conbuildmat.2017.03.201
21.
Kim
,
G. J.
,
Park
,
S. J.
, and
Kwak
,
H. G.
,
2017
, “
Experimental Characterization of Ultrasonic Nonlinearity in Concrete Under Cyclic Change of Prestressing Force Using Nonlinear Resonant Ultrasonic Spectroscopy
,”
Constr. Build. Mater.
,
157
, pp.
700
707
. 10.1016/j.conbuildmat.2017.09.050
22.
Antonaci
,
P.
,
Bruno
,
C. L. E.
,
Bocca
,
P. G.
,
Scalerandi
,
M.
, and
Gliozzi
,
A. S.
,
2010
, “
Nonlinear Ultrasonic Evaluation of Load Effects on Discontinuities in Concrete
,”
Cem. Concr. Res.
,
40
(
2
), pp.
340
346
. 10.1016/j.cemconres.2009.09.014
23.
Scalerandi
,
M.
,
Bentahar
,
M.
, and
Mechri
,
C.
,
2018
, “
Conditioning and Elastic Nonlinearity in Concrete: Separation of Damping and Phase Contributions
,”
Constr. Build. Mater.
,
161
, pp.
208
220
. 10.1016/j.conbuildmat.2017.11.035
24.
Ham
,
S.
,
Song
,
H.
,
Oelze
,
M. L.
, and
Popovics
,
J. S.
,
2017
, “
A Contactless Ultrasonic Surface Wave Approach to Characterize Distributed Cracking Damage in Concrete
,”
Ultrasonics
,
75
, pp.
46
57
. 10.1016/j.ultras.2016.11.003
25.
Kim
,
G.
,
Loreto
,
G.
,
Kim
,
J. Y.
,
Kurtis
,
K. E.
,
Wall
,
J. J.
, and
Jacobs
,
L. J.
,
2018
, “
In Situ Nonlinear Ultrasonic Technique for Monitoring Microcracking in Concrete Subjected to Creep and Cyclic Loading
,”
Ultrasonics
,
88
, pp.
64
71
. 10.1016/j.ultras.2018.03.006
26.
Kundu
,
T.
,
Eiras
,
J. N.
,
Li
,
W.
,
Liu
,
P.
,
Sohn
,
H.
, and
Payá
,
J.
,
2018
, “Fundamentals of Nonlinear Acoustical Techniques and Sideband Peak Count,”
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
T.
Kundu
ed.,
Springer
,
Cham
, pp.
1
88
.
27.
Castellano
,
A.
,
Foti
,
P.
,
Fraddosio
,
A.
,
Galietti
,
U.
,
Marzano
,
S.
, and
Piccioni
,
M. D.
,
2015
, “
Characterization of Material Damage by Ultrasonic Immersion Test
,”
Procedia Eng.
,
109
, pp.
395
402
. 10.1016/j.proeng.2015.06.248
28.
Castellano
,
A.
,
Fraddosio
,
A.
,
Marzano
,
S.
, and
Daniele Piccioni
,
M.
,
2017
, “
Some Advancements in the Ultrasonic Evaluation of Initial Stress States by the Analysis of the Acoustoelastic Effect
,”
Procedia Eng.
,
199
, pp.
1519
1526
. 10.1016/j.proeng.2017.09.494
29.
Johnson
,
P. A.
, and
Jia
,
X.
,
2005
, “
Nonlinear Dynamics, Granular Media and Dynamic Earthquake Triggering
,”
Nature
,
437
(
7060
), pp.
871
874
. 10.1038/nature04015
30.
Eiras
,
J. N.
,
Kundu
,
T.
,
Bonilla
,
M.
, and
Payá
,
J.
,
2013
, “
Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)
,”
J. Nondestruct. Eval.
,
32
(
3
), pp.
300
314
. 10.1007/s10921-013-0183-y
31.
Liu
,
P.
,
Sohn
,
H.
,
Kundu
,
T.
, and
Yang
,
S.
,
2014
, “
Noncontact Detection of Fatigue Cracks by Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
NDT&E Int.
,
66
, pp.
106
116
. 10.1016/j.ndteint.2014.06.002
32.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2020
, “
Monitoring Damage in Composite Plates From Crack Initiation to Macro-Crack Propagation Combining Linear and Nonlinear Ultrasonic Techniques
,”
Struct. Health Monit.
,
20
(
1
), pp.
139
150
. 10.1177/1475921720922922
33.
Alnuaimi
,
H.
,
Sasmal
,
S.
,
Amjad
,
U.
,
Hassani
,
A.
,
Zhang
,
L.
, and
Kundu
,
T.
,
2021
, “
Monitoring Concrete Curing by Linear and Nonlinear Ultrasonic Methods
,”
ACI Struct. Mater. J.
,
10
(
1
), p.
46
. https://doi.org/10.3390/ma10010046
34.
Ouarabi
,
M. A.
,
Antonaci
,
P.
,
Boubenider
,
F.
,
Gliozzi
,
A. S.
, and
Scalerandi
,
M.
,
2017
, “
Ultrasonic Monitoring of the Interaction Between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems
,”
Materials (Basel)
,
10
(
1
). 10.3390/ma10010046
You do not currently have access to this content.