Abstract

In view of their higher sensitivity in localizing an incipient damage, methods of non-destructive evaluation based on the nonlinear wave-damage interactions have been of continued interest in the recent past. In this paper, the propagation of guided waves through a delamination with contacting interfaces is studied numerically using a finite element-based framework. In particular, influence of the interlaminar location of the delamination on the nonlinear acoustic features in the response spectrum is investigated in detail. The numerical framework is validated by an in-house experimentation performed on a unidirectional glass fiber reinforced polymer (GFRP) laminate containing a through-width delamination. A parameter, referred to as the nonlinearity index (NI), is defined for quantifying the strength of the nonlinear wave-damage interactions and its dependence on the interlaminar location of the delamination is studied across a range of interrogation frequencies. The notion of contact energy intensity is introduced and further used for justifying the trends of variation of the NI obtained numerically and observed experimentally. Results indicate that two fundamental parameters govern the underlying contact phenomenon; they are the phase difference between the wave packets passing through the two sub-laminates and the flexural rigidities of the two sub-laminates present at the site of the delamination defect. While the former controls the relative displacement between the two sub-laminates, the latter governs the propensity of collisions between the two sub-laminates. Finally, a diametric effect of these two parameters on the generation of nonlinear harmonic signals with varying interlaminar locations of the delamination is brought out.

References

1.
Su
,
Z.
,
Ye
,
L.
, and
Lu
,
Y.
,
2006
, “
Guided Lamb Waves for Identification of Damage in Composite Structures: A Review
,”
J. Sound Vib.
,
295
(
3–5
), pp.
753
780
.
2.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart Mater. Struct.
,
25
(
5
), p.
053001
.
3.
Sikdar
,
S.
, and
Banerjee
,
S.
,
2017
,
Structural Health Monitoring of Advanced Composites Using Guided Waves: Online Monitoring of Defects/Discontinuities in Advanced Composite Structures Using Ultrasonic Guided Waves and PZTs
,
LAP LAMBERT Academic Publishing
.
4.
Guo
,
N.
, and
Cawley
,
P.
,
1993
, “
The Interaction of Lamb Waves With Delaminations in Composite Laminates
,”
J. Acoust. Soc. Amer.
,
94
(
4
), pp.
2240
2246
.
5.
Ramadas
,
C.
,
Balasubramaniam
,
K.
,
Joshi
,
M.
, and
Krishnamurthy
,
C.
,
2009
, “
Interaction of the Primary Anti-Symmetric Lamb Mode (A0) With Symmetric Delaminations: Numerical and Experimental Studies
,”
Smart Mater. Struct.
,
18
(
8
), p.
085011
.
6.
Delrue
,
S.
, and
Van Den Abeele
,
K.
,
2012
, “
Three-Dimensional Finite Element Simulation of Closed Delaminations in Composite Materials
,”
Ultrasonics
,
52
(
2
), pp.
315
324
.
7.
Soleimanpour
,
R.
,
Ng
,
C. T.
, and
Wang
,
C. H.
,
2017
, “
Higher Harmonic Generation of Guided Waves At Delaminations in Laminated Composite Beams
,”
Struct. Health Monit.
,
16
(
4
), pp.
400
417
.
8.
Kessler
,
S. S.
,
Spearing
,
S. M.
, and
Soutis
,
C.
,
2002
, “
Damage Detection in Composite Materials Using Lamb Wave Methods
,”
Smart Mater. Struct.
,
11
(
2
), p.
269
.
9.
Okabe
,
Y.
,
Fujibayashi
,
K.
,
Shimazaki
,
M.
,
Soejima
,
H.
, and
Ogisu
,
T.
,
2010
, “
Delamination Detection in Composite Laminates Using Dispersion Change Based on Mode Conversion of Lamb Waves
,”
Smart Mater. Struct.
,
19
(
11
), p.
115013
.
10.
Sohn
,
H.
,
Dutta
,
D.
,
Yang
,
J.
,
DeSimio
,
M.
,
Olson
,
S.
, and
Swenson
,
E.
,
2011
, “
Automated Detection of Delamination and Disbond From Wavefield Images Obtained Using a Scanning Laser Vibrometer
,”
Smart Mater. Struct.
,
20
(
4
), p.
045017
.
11.
Maio
,
L.
,
Hervin
,
F.
, and
Fromme
,
P.
,
2020
, “
Guided Wave Scattering Analysis Around a Circular Delamination in a Quasi-Isotropic Fiber-Composite Laminate
,”
Health Monitoring of Structural and Biological Systems XIV
,
Apr. 23
.
12.
Delrue
,
S.
, and
Van Den Abeele
,
K.
,
2015
, “
Detection of Defect Parameters Using Nonlinear Air-Coupled Emission by Ultrasonic Guided Waves At Contact Acoustic Nonlinearities
,”
Ultrasonics
,
63
, pp.
147
154
.
13.
Rauter
,
N.
, and
Lammering
,
R.
,
2015
, “
Impact Damage Detection in Composite Structures Considering Nonlinear Lamb Wave Propagation
,”
Mech. Adv. Mater. Struc.
,
22
(
1–2
), pp.
44
51
.
14.
Yelve
,
N. P.
,
Mitra
,
M.
, and
Mujumdar
,
P. M.
,
2017
, “
Detection of Delamination in Composite Laminates Using Lamb Wave Based Nonlinear Method
,”
Compos. Struct.
,
159
, pp.
257
266
.
15.
Soleimanpour
,
R.
, and
Ng
,
C. T.
,
2017
, “
Locating Delaminations in Laminated Composite Beams Using Nonlinear Guided Waves
,”
Eng. Struct.
,
131
, pp.
207
219
.
16.
Tabatabaeipour
,
M.
,
Hettler
,
J.
,
Delrue
,
S.
, and
Abeele
,
K. V. D.
,
2017
, “
Visualization of Delaminations in Composite Structures Using a Baseline-Free, Sparse Array Imaging Technique Based on Nonlinear Lamb Wave Propagation
,”
Acta Acust. United Acust.
,
103
(
6
), pp.
987
997
.
17.
Liu
,
X.
,
Bo
,
L.
,
Yang
,
K.
,
Liu
,
Y.
,
Zhao
,
Y.
,
Zhang
,
J.
,
Hu
,
N.
, and
Deng
,
M.
,
2018
, “
Locating and Imaging Contact Delamination Based on Chaotic Detection of Nonlinear Lamb Waves
,”
Mech. Syst. Signal Process.
,
109
, pp.
58
73
.
18.
Tie
,
Y.
,
Zhang
,
Q.
,
Hou
,
Y.
, and
Li
,
C.
,
2020
, “
Impact Damage Assessment in Orthotropic CFRP Laminates Using Nonlinear Lamb Wave: Experimental and Numerical Investigations
,”
Compos. Struct.
,
236
, p.
111869
.
19.
Mandal
,
D. D.
, and
Banerjee
,
S.
,
2019
, “
Identification of Breathing Type Disbonds in Stiffened Panels Using Non-Linear Lamb Waves and Built-in Circular PWT Array
,”
Mech. Syst. Signal Process.
,
117
, pp.
33
51
.
20.
Sikdar
,
S.
,
Van Paepegem
,
W.
,
Ostachowicz
,
W.
, and
Kersemans
,
M.
,
2020
, “
Nonlinear Elastic Wave Propagation and Breathing-Debond Identification in a Smart Composite Structure
,”
Compos. Part B: Eng.
,
200
, p.
108304
.
21.
Munian
,
R. K.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2018
, “
Lamb Wave Interaction With Composite Delamination
,”
Compos. Struct.
,
206
, pp.
484
498
.
22.
Pudipeddi
,
G. T.
,
Ng
,
C. T.
, and
Kotousov
,
A.
,
2019
, “
Mode Conversion and Scattering of Lamb Waves At Delaminations in Composite Laminates
,”
J. Aerosp. Eng.
,
32
(
5
), p.
04019067
.
23.
Wandowski
,
T.
,
Kudela
,
P.
,
Malinowski
,
P.
, and
Ostachowicz
,
W.
,
2019
, “
Guided Wave Mode Conversion Phenomenon in Composite Materials: Numerical and Experimental Study
,”
Health Monitoring of Structural and Biological Systems XIII
,
Denver, CO
,
Apr. 1
, p.
109720N
.
24.
Eremin
,
A.
,
Golub
,
M.
,
Glushkov
,
E.
, and
Glushkova
,
N.
,
2019
, “
Identification of Delamination Based on the Lamb Wave Scattering Resonance Frequencies
,”
NDT&E Int.
,
103
, pp.
145
153
.
25.
Gupta
,
S.
, and
Rajagopal
,
P.
,
2018
, “
Effect of Ply Orientation and Through-Thickness Position of Delamination on the Reflection of Fundamental Symmetric S0 Lamb Mode in GFRP Composite Plate Structures
,”
Ultrasonics
,
90
, pp.
109
119
.
26.
Shen
,
Y.
,
2017
, “
Numerical Investigation of Nonlinear Interactions Between Multimodal Guided Waves and Delamination in Composite Structures
,”
Health Monitoring of Structural and Biological Systems
,
Portland, OR
,
Apr. 5
, p.
101701Z
.
27.
Zhao
,
G.
,
Wang
,
B.
,
Wang
,
T.
,
Hao
,
W.
, and
Luo
,
Y.
,
2019
, “
Detection and Monitoring of Delamination in Composite Laminates Using Ultrasonic Guided Wave
,”
Compos. Struct.
,
225
, p.
111161
.
28.
Bartoli
,
I.
,
Marzani
,
A.
,
Di Scalea
,
F. L.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section
,”
J. Sound Vib.
,
295
(
3–5
), pp.
685
707
.
29.
Sohn
,
H.
, and
Lee
,
S. J.
,
2009
, “
Lamb Wave Tuning Curve Calibration for Surface-Bonded Piezoelectric Transducers
,”
Smart Mater. Struct.
,
19
(
1
), p.
015007
.
30.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
.
31.
Kishiwada
,
S.
,
Biwa
,
S.
,
Inserra
,
C.
, and
Matsumoto
,
E.
,
2009
, “
Nonlinear Ultrasonic Characterization of Lamb Wave in a Plate With Contacting Interfaces
,”
2009 ICCAS-SICE
,
Fukuoka, Japan
,
Aug. 18–21
, IEEE, pp.
2368
2372
.
You do not currently have access to this content.