Abstract

Safety and reliability of large critical infrastructure such as long-span bridges, high-rise buildings, nuclear power plants, high-voltage transmission towers, rotating machinery, and so on, are important for a modern society. Research on reliability and safety analysis started with a “small data” problem dealing with relative scarce lifetime or failure data. Later, degradation modeling that uses performance deterioration, or, condition data collected from in-service inspections or online health monitoring became an important tool for reliability prediction and maintenance planning of highly reliable engineering systems. Over the past decades, a large number of degradation models have been developed to characterize and quantify the underlying degradation mechanism using direct and indirect measurements. Recent advancements in artificial intelligence, remote sensing, big data analytics, and Internet of things are making far-reaching impacts on almost every aspect of our lives. The effect of these changes on the degradation modeling, prognosis, and safety management is interesting questions to explore. This paper presents a comprehensive, forward-looking review of the various degradation models and their practical applications to damage prognosis and management of critical infrastructure. The degradation models are classified into four categories: physics-based, knowledge-based, data-driven, and hybrid approaches.

References

References
1.
Nelson
,
W. B.
,
2009
,
Accelerated Testing: Statistical Models, Test Plans, and Data Analysis
, Vol.
344
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Escobar
,
L. A.
, and
Meeker
,
W. Q.
,
2006
, “
A Review of Accelerated Test Models
,”
Stat. Sci.
,
21
(
4
), pp.
552
577
. 10.1214/088342306000000321
3.
van Noortwijk
,
J. M.
,
2009
, “
A Survey of the Application of Gamma Processes in Maintenance
,”
Reliab. Eng. Syst. Safety
,
94
(
1
), pp.
2
21
. 10.1016/j.ress.2007.03.019
4.
Gorjian
,
N.
,
Ma
,
L.
,
Mittinty
,
M.
,
Yarlagadda
,
P.
, and
Sun
,
Y.
,
2010
, “A Review on Degradation Models in Reliability Analysis,”
Engineering Asset Lifecycle Management
,
J.
Mathew
,
D.
Kiritsis
,
A.
Koronios
, and
C.
Emmanouilidis
, eds.,
Springer
,
London
, pp.
369
384
.
5.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
, and
Zhou
,
D. H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Operat. Res.
,
213
(
1
), pp.
1
14
. 10.1016/j.ejor.2010.11.018
6.
Ahmad
,
R.
, and
Kamaruddin
,
S.
,
2012
, “
An Overview of Time-Based and Condition-Based Maintenance in Industrial Application
,”
Comput. Indust. Eng.
,
63
(
1
), pp.
135
149
. 10.1016/j.cie.2012.02.002
7.
Ye
,
Z.-S.
, and
Xie
,
M.
,
2015
, “
Stochastic Modelling and Analysis of Degradation for Highly Reliable Products
,”
Appl. Stoch. Models Business Indus.
,
31
(
1
), pp.
16
32
. 10.1002/asmb.2063
8.
Biondini
,
F.
, and
Frangopol
,
D. M.
,
2016
, “
Life-Cycle Performance of Deteriorating Structural Systems Under Uncertainty
,”
J. Struct. Eng.
,
142
(
9
), p.
F4016001
. 10.1061/(ASCE)ST.1943-541X.0001544
9.
Shahraki
,
A. F.
,
Yadav
,
O. P.
, and
Liao
,
H.
,
2017
, “
A Review on Degradation Modelling and Its Engineering Applications
,”
Int. J. Performability Eng.
,
13
(
3
), p.
299
.
10.
Alaswad
,
S.
, and
Xiang
,
Y.
,
2017
, “
A Review on Condition-Based Maintenance Optimization Models for Stochastically Deteriorating System
,”
Reliab. Eng. Syst. Safety
,
157
(
1
), pp.
54
63
. 10.1016/j.ress.2016.08.009
11.
Mevissen
,
F.
, and
Meo
,
M.
,
2019
, “
A Review of NDT/Structural Health Monitoring Techniques for Hot Gas Components in Gas Turbines
,”
Sensors
,
19
(
3
), p.
711
. 10.3390/s19030711
12.
McCann
,
D.
, and
Forde
,
M.
,
2001
, “
Review of NDT Methods in the Assessment of Concrete and Masonry Structures
,”
NDT E Int.
,
34
(
2
), pp.
71
84
. 10.1016/S0963-8695(00)00032-3
13.
Alani
,
A. M.
,
Aboutalebi
,
M.
, and
Kilic
,
G.
,
2014
, “
Integrated Health Assessment Strategy Using NDT for Reinforced Concrete Bridges
,”
NDT E Int.
,
61
(
1
), pp.
80
94
. 10.1016/j.ndteint.2013.10.001
14.
Drewry
,
M. A.
, and
Georgiou
,
G.
,
2007
, “
A Review of NDT Techniques for Wind Turbines
,”
Insight-Non-Destructive Test. Cond. Monit.
,
49
(
3
), pp.
137
141
. 10.1784/insi.2007.49.3.137
15.
Gholizadeh
,
S.
,
2016
, “
A Review of Non-Destructive Testing Methods of Composite Materials
,”
XV Portuguese Conference on Fracture
,
Paço de Arcos, Portugal
,
Feb. 10–12
.
16.
Moles
,
M.
,
Dubé
,
N.
,
Labbé
,
S.
, and
Ginzel
,
E.
,
2005
, “
Review of Ultrasonic Phased Arrays for Pressure Vessel and Pipeline Weld Inspections
,”
ASME J. Pressure Vessel Technol.
,
127
(
3
), pp.
351
356
10.1115/1.1991881
17.
Lu
,
C. J.
, and
Meeker
,
W. O.
,
1993
, “
Using Degradation Measures to Estimate a Time-to-Failure Distribution
,”
Technometrics
,
35
(
2
), pp.
161
174
. 10.1080/00401706.1993.10485038
18.
Pandey
,
M.
,
Lu
,
D.
, and
Komljenovic
,
D.
,
2009
, “
The Impact of Probabilistic Modelling on Predicting the Remaining Life of Pipes in Nuclear Plants
,”
17th International Conference on Nuclear Engineering
,
Brussels, Belgium
,
American Society of Mechanical Engineers
, pp.
503
511
.
19.
Pandey
,
M. D.
,
1998
, “
Probabilistic Models for Condition Assessment of Oil and Gas Pipelines
,”
NDT E Int.
,
31
(
5
), pp.
349
358
. 10.1016/S0963-8695(98)00003-6
20.
Yuan
,
X.-X.
,
Pandey
,
M.
, and
Bickel
,
G.
,
2008
, “
A Probabilistic Model of Wall Thinning in Candu Feeders Due to Flow-Accelerated Corrosion
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
16
24
. 10.1016/j.nucengdes.2007.06.004
21.
Lin
,
P.
, and
Yuan
,
X.-X.
,
2020
, “
Development of Performance Measures for Pedestrian Sidewalk Asset Management
,”
Infrastructure Asset Management
,
7
(
3
), pp.
190
200
.
22.
Al-Hussein
,
A.
, and
Haldar
,
A.
,
2017
, “
Structural Damage Prognosis of Three-dimensional Large Structural Systems
,”
Struct. Infrastructure Eng.
,
13
(
1
), pp.
1
13
. 10.1080/15732479.2017.1304430
23.
Jin
,
G.
,
Matthews
,
D. E.
, and
Zhou
,
Z.
,
2013
, “
A Bayesian Framework for On-Line Degradation Assessment and Residual Life Prediction of Secondary Batteries in Spacecraft
,”
Reliab. Eng. Syst. Safety
,
113
(
1
), pp.
7
20
. 10.1016/j.ress.2012.12.011
24.
Wang
,
V. Z.
,
Pease
,
T.
, and
Robinson
,
S.
,
2015
, “
Statistical Damage Prognosis for in-service Civil Structures Against Hazards: Formulations and Applications
,”
J. Eng. Mech.
,
142
(
3
), p.
04015090
. 10.1061/(ASCE)EM.1943-7889.0000969
25.
Li
,
Z.
, and
Zhang
,
Y.
,
2014
, “
Extreme Value Theory-based Structural Health Prognosis Method Using Reduced Sensor Data
,”
Struct. Infrastruct. Eng.
,
10
(
8
), pp.
988
997
. 10.1080/15732479.2013.774427
26.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Proc.
,
20
(
7
), pp.
1483
1510
. 10.1016/j.ymssp.2005.09.012
27.
Sikorska
,
J.
,
Hodkiewicz
,
M.
, and
Ma
,
L.
,
2011
, “
Prognostic Modelling Options for Remaining Useful Life Estimation by Industry
,”
Mech. Syst. Signal Proc.
,
25
(
5
), pp.
1803
1836
. 10.1016/j.ymssp.2010.11.018
28.
Das
,
S.
, and
Saha
,
P.
,
2018
, “
Structural Health Monitoring Techniques Implemented on IASC-ASCE Benchmark Problem: A Review
,”
J. Civil Struct. Health Monit.
,
8
(
4
), pp.
689
718
. 10.1007/s13349-018-0292-5
29.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Proc.
,
104
(
5
), pp.
799
834
. 10.1016/j.ymssp.2017.11.016
30.
Cubillo
,
A.
,
Perinpanayagam
,
S.
, and
Esperon-Miguez
,
M.
,
2016
, “
A Review of Physics-Based Models in Prognostics: Application to Gears and Bearings of Rotating Machinery
,”
Adv. Mech. Eng.
,
8
(
8
), p.
1687814016664660
. 10.1177/1687814016664660
31.
Peng
,
Y.
,
Dong
,
M.
, and
Zuo
,
M. J.
,
2010
, “
Current Status of Machine Prognostics in Condition-Based Maintenance: A Review
,”
Int. J. Adv. Manuf. Technol.
,
50
(
1-4
), pp.
297
313
. 10.1007/s00170-009-2482-0
32.
Zhang
,
Z.
,
Si
,
X.
,
Hu
,
C.
, and
Lei
,
Y.
,
2018
, “
Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods
,”
Eur. J. Operat. Res.
,
271
(
3
), pp.
775
796
. 10.1016/j.ejor.2018.02.033
33.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Operat. Res.
,
213
(
1
), pp.
1
14
. 10.1016/j.ejor.2010.11.018
34.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C.
, and
Mathew
,
J.
,
2009
, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Proc.
,
23
(
3
), pp.
724
739
. 10.1016/j.ymssp.2008.06.009
35.
Liao
,
L.
, and
Köttig
,
F.
,
2014
, “
Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and An Application to Battery Life Prediction
,”
IEEE Trans. Reliab.
,
63
(
1
), pp.
191
207
. 10.1109/TR.2014.2299152
36.
Luo
,
J.
,
Bixby
,
A.
,
Pattipati
,
K.
,
Qiao
,
L.
,
Kawamoto
,
M.
, and
Chigusa
,
S.
,
2003
, “
An Interacting Multiple Model Approach to Model-Based Prognostics
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Washington, DC
, Vol.
1
,
IEEE
, pp.
189
194
.
37.
Tripura
,
T.
,
Gogoi
,
A.
, and
Hazra
,
B.
,
2020
, “
An ITO-Taylor Weak 3.0 Method for Stochastic Dynamics of Nonlinear Systems
,”
Appl. Math. Model.
,
86
(
10
), pp.
115
141
. 10.1016/j.apm.2020.05.014
38.
Tripura
,
T.
,
Bhowmik
,
B.
,
Pakrashi
,
V.
, and
Hazra
,
B.
,
2020
, “
Real-Time Damage Detection of Degrading Systems
,”
Struct. Health. Monit.
,
19
(
3
), pp.
810
837
. 10.1177/1475921719861801
39.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic. Eng.
,
85
(
4
), pp.
528
533
. 10.1115/1.3656900
40.
Biondini
,
F.
,
Bontempi
,
F.
,
Frangopol
,
D. M.
, and
Malerba
,
P. G.
,
2006
, “
Probabilistic Service Life Assessment and Maintenance Planning of Concrete Structures
,”
J. Struct. Eng.
,
132
(
5
), pp.
810
825
. 10.1061/(ASCE)0733-9445(2006)132:5(810)
41.
Kim
,
N.-H.
,
An
,
D.
, and
Choi
,
J.-H.
,
2016
,
Prognostics and Health Management of Engineering Systems: An Introduction
,
Springer
,
Gewerbestrasse 11, 6330 Cham, Switzerland
.
42.
Nikulin
,
M.
,
Limnios
,
N.
,
Balakrishnan
,
N.
,
Kahle
,
W.
, and
Huber-Carol
,
C.
,
2010
, “
Advances in Degradation Modeling: Applications to Reliability
,”
Survival Analysis, and Finance
,
Springer/Birkhauser
,
Boston, MA
, p.
416
.
43.
Yuan
,
X.-X.
,
2007
, “
Stochastic Modeling of Deterioration in Nuclear Power Plant Components
,” Ph.D. thesis,
University of Waterloo
,
Waterloo, ON, Canada
.
44.
Zaretsky
,
E. V.
, “
A. Palmgren Revisited: A basis for Bearing Life Prediction
,”
NASA Technical Memorandum 107440
.
45.
Subramanian
,
S.
,
Reifsnider
,
K.
, and
Stinchcomb
,
W.
,
1995
, “
A Cumulative Damage Model to Predict the Fatigue Life of Composite Laminates Including the Effect of a Fibre-Matrix Interphase
,”
Int. J. Fatigue.
,
17
(
5
), pp.
343
351
. 10.1016/0142-1123(95)99735-S
46.
Hwang
,
W.
, and
Han
,
K.
,
1986
, “
Cumulative Damage Models and Multi-Stress Fatigue Life Prediction
,”
J. Compos. Mater.
,
20
(
2
), pp.
125
153
. 10.1177/002199838602000202
47.
Yao
,
W.
, and
Himmel
,
N.
,
2000
, “
A New Cumulative Fatigue Damage Model for Fibre-Reinforced Plastics
,”
Compos. Sci. Technol.
,
60
(
1
), pp.
59
64
. 10.1016/S0266-3538(99)00100-1
48.
Ekberg
,
A.
,
Bjarnehed
,
H.
, and
Lundbéan
,
R.
,
1995
, “
A Fatigue Life Model for General Rolling Contact With Application to Wheel/Rail Damage
,”
Fatigue. Fract. Eng. Mater. Struct.
,
18
(
10
), pp.
1189
1199
. 10.1111/j.1460-2695.1995.tb00847.x
49.
Rafiee
,
K.
,
Feng
,
Q.
, and
Coit
,
D. W.
,
2014
, “
Reliability Modeling for Dependent Competing Failure Processes With Changing Degradation Rate
,”
IIE Trans.
,
46
(
5
), pp.
483
496
. 10.1080/0740817X.2013.812270
50.
Song
,
S.
,
Coit
,
D. W.
,
Feng
,
Q.
, and
Peng
,
H.
,
2014
, “
Reliability Analysis for Multi-Component Systems Subject to Multiple Dependent Competing Failure Processes
,”
IEEE Trans. Reliab.
,
63
(
1
), pp.
331
345
. 10.1109/TR.2014.2299693
51.
Wang
,
Z.
,
Huang
,
H.-Z.
,
Li
,
Y.
, and
Xiao
,
N.-C.
,
2011
, “
An Approach to Reliability Assessment Under Degradation and Shock Process
,”
IEEE Trans. Reliab.
,
60
(
4
), pp.
852
863
. 10.1109/TR.2011.2170254
52.
Iannacone
,
L.
, and
Gardoni
,
P.
,
2019
, “
Stochastic Differential Equations for the Deterioration Processes of Engineering Systems
,”
13th International Conference on Applications of Statistics and Probability in Civil Engineering
,
Seoul, South Korea
,
ICASP13
, pp.
1663
1670
.
53.
Shah
,
Y. U.
,
Jain
,
S.
,
Tiwari
,
D.
, and
Jain
,
M.
,
2013
, “
Development of Overall Pavement Condition Index for Urban Road Network
,”
Proc.-Soc. Behav. Sci.
,
104
(
12
), pp.
332
341
. 10.1016/j.sbspro.2013.11.126
54.
Madanat
,
S.
,
Mishalani
,
R.
, and
Ibrahim
,
W. H. W.
,
1995
, “
Estimation of Infrastructure Transition Probabilities From Condition Rating Data
,”
J. Infrastruct. Syst.
,
1
(
2
), pp.
120
125
. 10.1061/(ASCE)1076-0342(1995)1:2(120)
55.
Tsuda
,
Y.
,
Kaito
,
K.
,
Aoki
,
K.
, and
Kobayashi
,
K.
,
2006
, “
Estimating Markovian Transition Probabilities for Bridge Deterioration Forecasting
,”
Struct. Eng./Earthquake Eng.
,
23
(
2
), pp.
241s
256s
. 10.2208/jsceseee.23.241s
56.
Kharoufeh
,
J. P.
,
Solo
,
C. J.
, and
Ulukus
,
M. Y.
,
2010
, “
Semi-Markov Models for Degradation-Based Reliability
,”
IIE Trans.
,
42
(
8
), pp.
599
612
. 10.1080/07408170903394371
57.
Compare
,
M.
,
Martini
,
F.
,
Mattafirri
,
S.
,
Carlevaro
,
F.
, and
Zio
,
E.
,
2016
, “
Semi-Markov Model for the Oxidation Degradation Mechanism in Gas Turbine Nozzles
,”
IEEE Trans. Reliab.
,
65
(
2
), pp.
574
581
. 10.1109/TR.2015.2506610
58.
Karlin
,
S.
, and
Taylor
,
H. M.
,
1975
,
A First Course in Stochastic Processes
,
Academic
,
San Diego
.
59.
Doksum
,
K. A.
, and
Hbyland
,
A.
,
1992
, “
Models for Variable-Stress Accelerated Life Testing Experiments Based on Wener Processes and the Inverse Gaussian Distribution
,”
Technometrics
,
34
(
1
), pp.
74
82
. 10.2307/1269554
60.
Wang
,
X.
,
2010
, “
Wiener Processes With Random Effects for Degradation Data
,”
J. Multi. Anal.
,
101
(
2
), pp.
340
351
. 10.1016/j.jmva.2008.12.007
61.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
,
Chen
,
M.-Y.
, and
Zhou
,
D.-H.
,
2013
, “
A Wiener-Process-Based Degradation Model With a Recursive Filter Algorithm for Remaining Useful Life Estimation
,”
Mech. Syst. Signal Proc.
,
35
(
1
), pp.
219
237
. 10.1016/j.ymssp.2012.08.016
62.
Whitmore
,
G.
, and
Schenkelberg
,
F.
,
1997
, “
Modelling Accelerated Degradation Data Using Wiener Diffusion With a Time Scale Transformation
,”
Life. Data Anal.
,
3
(
1
), pp.
27
45
. 10.1023/A:1009664101413
63.
Ye
,
Z.-S.
,
Wang
,
Y.
,
Tsui
,
K.-L.
, and
Pecht
,
M.
,
2013
, “
Degradation Data Analysis Using Wiener Processes With Measurement Errors
,”
Reliab., IEEE Trans. on
,
62
(
4
), pp.
772
780
. 10.1109/TR.2013.2284733
64.
Van Noortwijk
,
J.
,
2009
, “
A Survey of the Application of Gamma Processes in Maintenance
,”
Reliab. Eng. Syst. Safety
,
94
(
1
), pp.
2
21
. 10.1016/j.ress.2007.03.019
65.
Guo
,
B.
, and
Tan
,
L.
,
2009
, “
Reliability Assessment of Gamma Deteriorating System Based on Bayesian Updating
,”
8th International Conference on Reliability, Maintainability and Safety
,
Chengdu, China
,
July 20–24
,
IEEE
, pp.
429
432
.
66.
Ye
,
Z.-S.
,
Xie
,
M.
,
Tang
,
L.-C.
, and
Chen
,
N.
,
2014
, “
Semiparametric Estimation of Gamma Processes for Deteriorating Products
,”
Technometrics
,
56
(
4
), pp.
504
513
. 10.1080/00401706.2013.869261
67.
Edirisinghe
,
R.
,
Setunge
,
S.
, and
Zhang
,
G.
,
2013
, “
Application of Gamma Process for Building Deterioration Prediction
,”
J. Perform. Const. Facilities
,
27
(
6
), pp.
763
773
. 10.1061/(ASCE)CF.1943-5509.0000358
68.
Cinlar
,
E.
,
Bazant
,
Z. P.
, and
Osman
,
E. M.
,
1977
, “
Stochastic Process for Extrapolating Concrete Creep
,”
J. Eng. Mech.
,
103
(
6
), pp.
1069
1088
.
69.
Lawless
,
J.
, and
Crowder
,
M.
,
2004
, “
Covariates and Random Effects in a Gamma Process Model With Application to Degradation and Failure
,”
Lifetime Data Anal.
,
10
(
3
), pp.
213
227
. 10.1023/B:LIDA.0000036389.14073.dd
70.
Van Noortwijk
,
J.
,
Kallen
,
M.
, and
Pandey
,
M.
,
2005
, “
Gamma Processes for Time-Dependent Reliability of Structures
,”
Adv. Safety Reliab., Proc. ESREL
,
12
, pp.
1457
1464
.
71.
Grall
,
A.
,
Bérenguer
,
C.
, and
Dieulle
,
L.
,
2002
, “
A Condition-Based Maintenance Policy for Stochastically Deteriorating Systems
,”
Reliab. Eng. Syst. Safety
,
76
(
2
), pp.
167
180
. 10.1016/S0951-8320(01)00148-X
72.
Liao
,
H.
,
Elsayed
,
E. A.
, and
Chan
,
L.-Y.
,
2006
, “
Maintenance of Continuously Monitored Degrading Systems
,”
Eur. J. Opera. Res.
,
175
(
2
), pp.
821
835
. 10.1016/j.ejor.2005.05.017
73.
Wang
,
X.
, and
Xu
,
D.
,
2010
, “
An Inverse Gaussian Process Model for Degradation Data
,”
Technometrics
,
52
(
2
), pp.
188
197
. 10.1198/TECH.2009.08197
74.
Ye
,
Z.-S.
, and
Chen
,
N.
,
2014
, “
The Inverse Gaussian Process As a Degradation Model
,”
Technometrics
,
56
(
3
), pp.
302
311
. 10.1080/00401706.2013.830074
75.
Peng
,
W.
,
Li
,
Y.-F.
,
Yang
,
Y.-J.
,
Huang
,
H.-Z.
, and
Zuo
,
M. J.
,
2014
, “
Inverse Gaussian Process Models for Degradation Analysis: A Bayesian Perspective
,”
Reliab. Eng. Syst. Safety
,
130
(
10
), pp.
175
189
. 10.1016/j.ress.2014.06.005
76.
Box
,
G. E.
,
Jenkins
,
G. M.
,
Reinsel
,
G. C.
, and
Ljung
,
G. M.
,
2015
,
Time Series Analysis: Forecasting and Control
,
John Wiley & Sons
,
Hoboken, NJ
.
77.
Wu
,
W.
,
Hu
,
J.
, and
Zhang
,
J.
,
2007
, “
Prognostics of Machine Health Condition Using An Improved Arima-Based Prediction Method
,”
2nd IEEE Conference on Industrial Electronics and Applications
,
Harbin, China
,
May 23–25
,
IEEE
, pp.
1062
1067
.
78.
Yan
,
J.
,
Koc
,
M.
, and
Lee
,
J.
,
2004
, “
A Prognostic Algorithm for Machine Performance Assessment and Its Application
,”
Prod. Planning Control
,
15
(
8
), pp.
796
801
. 10.1080/09537280412331309208
79.
Kobayashi
,
K.
,
Kaito
,
K.
, and
Kazumi
,
K.
,
2014
, “
Deterioration Forecasting of Joint Members Based on Longterm Monitoring Data
,”
EURO J. Trans. Logist.
,
4
(
1
), pp.
5
30
. 10.1007/s13676-014-0069-x
80.
Kobayashi
,
K.
,
Kaito
,
K.
, and
Mizutani
,
D.
,
2017
, “
Deterioration Prediction of Infrastructures with Time Series Data Considering Long Memory Effect
,”
IABSE International Association for Bridge and Structural Engineering
,
Zurich, Switzerland
,
Sept., 2015
.
81.
Liao
,
H.
, and
Elsayed
,
M.
,
2005
, “
Optimization of System Reliability Robustness Using Accelerated Degradation Testing
,”
2005, Proceedings of Annual Reliability and Maintainability Symposium
,
Alexandria, VA
,
Jan. 24–27
,
IEEE
, pp.
48
54
.
82.
Lydersen
,
S.
, and
Rausand
,
M.
,
1987
, “
A Systematic Approach to Acclerated Life Testing
,”
Reliab. Eng.
,
18
(
4
), pp.
285
293
. 10.1016/0143-8174(87)90033-3
83.
Park
,
C.
, and
Padgett
,
W.
,
2005
, “
Accelerated Degradation Models for Failure Based on Geometric Brownian Motion and Gamma Processes
,”
Lifetime Data Anal.
,
11
(
4
), pp.
511
527
. 10.1007/s10985-005-5237-8
84.
Trevisanello
,
L.
,
Meneghini
,
M.
,
Mura
,
G.
,
Vanzi
,
M.
,
Pavesi
,
M.
,
Meneghesso
,
G.
, and
Zanoni
,
E.
,
2008
, “
Accelerated Life Test of High Brightness Light Emitting Diodes
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
2
), pp.
304
311
. 10.1109/TDMR.2008.919596
85.
Wang
,
W.
, and
Dragomir-Daescu
,
D.
,
2002
, “
Reliability Quantification of Induction Motors-accelerated Degradation Testing Approach
,”
Proceedings of Annual Reliability and Maintainability Symposium
,
Seattle, WA
,
IEEE
, pp.
325
331
.
86.
Zhang
,
C.
,
Le
,
M.
,
Seth
,
B.
, and
Liang
,
S.
,
2002
, “
Bearing Life Prognosis Under Environmental Effects Based on Accelerated Life Testing
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
216
(
5
), pp.
509
516
. 10.1243/0954406021525304
87.
Weidl
,
G.
,
Madsen
,
A. L.
, and
Israelson
,
S.
,
2005
, “
Applications of Object-Oriented Bayesian Networks for Condition Monitoring, Root Cause Analysis and Decision Support on Operation of Complex Continuous Processes
,”
Comput. Chem. Eng.
,
29
(
9
), pp.
1996
2009
. 10.1016/j.compchemeng.2005.05.005
88.
Maguluri
,
G.
, and
Zhang
,
C.-H.
,
1994
, “
Estimation in the Mean Residual Life Regression Model
,”
J. R. Stat. Soc.: Ser. B (Methodological)
,
56
(
3
), pp.
477
489
.
89.
Yuen
,
K.
,
Zhu
,
L.
, and
Tang
,
N.
,
2003
, “
On the Mean Residual Life Regression Model
,”
J. Stat. Plann. Inference
,
113
(
2
), pp.
685
698
. 10.1016/S0378-3758(02)00091-5
90.
Dey
,
S.
, and
Stori
,
J.
,
2005
, “
A Bayesian Network Approach to Root Cause Diagnosis of Process Variations
,”
Int. J. Mach. Tools. Manuf.
,
45
(
1
), pp.
75
91
. 10.1016/j.ijmachtools.2004.06.018
91.
Kallen
,
M.-J.
, and
van Noortwijk
,
J. M.
,
2005
, “
Optimal Maintenance Decisions Under Imperfect Inspection
,”
Reliab. Eng. Syst. Safety
,
90
(
2–3
), pp.
177
185
. 10.1016/j.ress.2004.10.004
92.
Yuan
,
M.
,
Liu
,
Y.
,
Yan
,
D.
, and
Liu
,
Y.
,
2019
, “
Probabilistic Fatigue Life Prediction for Concrete Bridges Using Bayesian Inference
,”
Adv. Struct. Eng.
,
22
(
3
), pp.
765
778
. 10.1177/1369433218799545
93.
Wang
,
W.
,
1997
, “
Subjective Estimation of the Delay Time Distribution in Maintenance Modelling
,”
Eur. J. Operat. Res.
,
99
(
3
), pp.
516
529
. 10.1016/S0377-2217(96)00318-9
94.
Batzel
,
T. D.
, and
Swanson
,
D. C.
,
2009
, “
Prognostic Health Management of Aircraft Power Generators
,”
IEEE Trans. Aeros. Electronic Syst.
,
45
(
2
), pp.
473
482
. 10.1109/TAES.2009.5089535
95.
Orchard
,
M. E.
, and
Vachtsevanos
,
G. J.
,
2009
, “
A Particle-Filtering Approach for On-Line Fault Diagnosis and Failure Prognosis
,”
Trans. Inst. Meas. Control
,
31
(
3–4
), pp.
221
246
. 10.1177/0142331208092026
96.
Cadini
,
F.
,
Zio
,
E.
, and
Avram
,
D.
,
2009
, “
Model-Based Monte Carlo State Estimation for Condition-Based Component Replacement
,”
Reliab. Eng. Syst. Safety
,
94
(
3
), pp.
752
758
. 10.1016/j.ress.2008.08.003
97.
Tang
,
L.
,
DeCastro
,
J.
,
Kacprzynski
,
G.
,
Goebel
,
K.
, and
Vachtsevanos
,
G.
,
2010
, “
Filtering and Prediction Techniques for Model-Based Prognosis and Uncertainty Management
,”
2010 Prognostics and System Health Management Conference
,
Macao, China
,
Jan. 12–14
.
98.
Rabiner
,
L. R.
, and
Juang
,
B.-H.
,
1993
,
Fundamentals of Speech Recognition
, Vol.
14
,
PTR Prentice Hall
,
Englewood Cliffs, Hoboken, NJ
.
99.
Boutros
,
T.
, and
Liang
,
M.
,
2011
, “
Detection and Diagnosis of Bearing and Cutting Tool Faults Using Hidden Markov Models
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2102
2124
. 10.1016/j.ymssp.2011.01.013
100.
Baruah
,
P.
, and
Chinnam
,
R. B.
,
2005
, “
HMMs for Diagnostics and Prognostics in Machining Processes
,”
Int. J. Product. Res.
,
43
(
6
), pp.
1275
1293
. 10.1080/00207540412331327727
101.
Zhang
,
X.
,
Xu
,
R.
,
Kwan
,
C.
,
Liang
,
S. Y.
,
Xie
,
Q.
, and
Haynes
,
L.
,
2005
, “
An Integrated Approach to Bearing Fault Diagnostics and Prognostics
,”
2005 American Control Conference ThB15
.,
Portland, OR
,
June 8–10
,
IEEE
, pp.
2750
2755
.
102.
Kobayashi
,
K.
,
Kaito
,
K.
, and
Lethanh
,
N.
,
2012
, “
A Statistical Deterioration Forecasting Method Using Hidden Markov Model for Infrastructure Management
,”
Trans. Res. Part B: Methodol.
,
46
(
4
), pp.
544
561
. 10.1016/j.trb.2011.11.008
103.
Lethanh
,
N.
,
Kaito
,
K.
, and
Kobayashi
,
K.
,
2014
, “
Infrastructure Deterioration Prediction With a Poisson Hidden Markov Model on Time Series Data
,”
J. Infrastruct. Syst.
,
21
(
3
), p.
04014051
. 10.1061/(ASCE)IS.1943-555X.0000242
104.
Dong
,
M.
, and
He
,
D.
,
2007
, “
A Segmental Hidden Semi-Markov Model (HSMM)-Based Diagnostics and Prognostics Framework and Methodology
,”
Mech. Syst. Signal Proc.
,
21
(
5
), pp.
2248
2266
. 10.1016/j.ymssp.2006.10.001
105.
Peng
,
Y.
, and
Dong
,
M.
,
2011
, “
A Prognosis Method Using Age-Dependent Hidden Semi-Markov Model for Equipment Health Prediction
,”
Mech. Syst. Signal Proc.
,
25
(
1
), pp.
237
252
. 10.1016/j.ymssp.2010.04.002
106.
Gebraeel
,
N. Z.
, and
Lawley
,
M. A.
,
2008
, “
A Neural Network Degradation Model for Computing and Updating Residual Life Distributions
,”
IEEE Trans. Auto. Sci. Eng.
,
5
(
1
), pp.
154
163
. 10.1109/TASE.2007.910302
107.
Tran
,
H. D.
,
Perera
,
B.
, and
Ng
,
A.
,
2010
, “
Markov and Neural Network Models for Prediction of Structural Deterioration of Storm-Water Pipe Assets
,”
J. Infrastruct. Syst.
,
16
(
2
), pp.
167
171
. 10.1061/(ASCE)IS.1943-555X.0000025
108.
Tatari
,
O.
,
Sargand
,
S. M.
,
Masada
,
T.
, and
Tarawneh
,
B.
,
2013
, “
Neural Network Approach to Condition Assessment of Highway Culverts: Case Study in Ohio
,”
J. Infrastruct. Syst.
,
19
(
4
), pp.
409
414
. 10.1061/(ASCE)IS.1943-555X.0000139
109.
Tabatabaee
,
N.
,
Ziyadi
,
M.
, and
Shafahi
,
Y.
,
2013
, “
Two-stage Support Vector Classifier and Recurrent Neural Network Predictor for Pavement Performance Modeling
,”
J. Infrastruct. Syst.
,
19
(
3
), pp.
266
274
. 10.1061/(ASCE)IS.1943-555X.0000132
110.
Lee
,
J.
,
Guan
,
H.
,
Loo
,
Y.-C.
, and
Blumenstein
,
M.
,
2014
, “
Development of a Long-Term Bridge Element Performance Model Using Elman Neural Networks
,”
J. Infrastruct. Syst.
,
20
(
3
), p.
04014013
. 10.1061/(ASCE)IS.1943-555X.0000197
111.
Alipour
,
M.
, and
Harris
,
D. K.
,
2020
, “
A Big Data Analytics Strategy for Scalable Urban Infrastructure Condition Assessment Using Semi-Supervised Multi-Transform Self-Training
,”
J. Civil Struct. Health Monitoring
,
10
(
2
), pp.
313
332
. 10.1007/s13349-020-00386-4
112.
Cheng
,
M. Y.
, and
Hoang
,
N. D.
,
2019
, “
Risk Score Inference for Bridge Maintenance Project Using Evolutionary Fuzzy Least Squares Support Vector Machine
,”
J. Comput. Civil Eng.
,
28
(
3
), p.
04014003
.
113.
Fiorillo
,
G.
, and
Nassif
,
H.
,
2020
, “
Improving the Conversion Accuracy Between Bridge Element Conditions and NBI Ratings Using Deep Convolutional Neural Networks
,”
Struct. Infrastruct. Eng.
,
16
(
12
), pp.
1669
1682
. 10.1080/15732479.2020.1725065
114.
Li
,
P.
,
Jia
,
X. D.
,
Feng
,
J. S.
,
Zhu
,
F.
,
Miller
,
M.
,
Chen
,
L. Y.
, and
Lee
,
J.
,
2020
, “
A Novel Scalable Method for Machine Degradation Assessment Using Deep Convolutional Neural Network
,”
Measurement
,
151
(2), p.
107106
.
115.
Liu
,
H.
, and
Zhang
,
Y. F.
,
2020
, “
Bridge Condition Rating Data Modeling Using Deep Learning Algorithm
,”
Struct. Infrastruct. Eng.
,
16
(
10
), pp.
1447
1460
. 10.1080/15732479.2020.1712610
116.
Malek Mohammadi
,
M.
,
Najafi
,
M.
,
Kaushal
,
V.
,
Serajiantehrani
,
R.
,
Salehabadi
,
N.
, and
Ashoori
,
T.
,
2019
, “
Sewer Pipes Condition Prediction Models: A State-of-the-Art Review
,”
Infrastructures
,
4
(
4
), p.
64
. 10.3390/infrastructures4040064
117.
Gebraeel
,
N.
,
2006
, “
Sensory-updated Residual Life Distributions for Components With Exponential Degradation Patterns
,”
Aut. Sci. Eng., IEEE Trans.
,
3
(
4
), pp.
382
393
. 10.1109/TASE.2006.876609
118.
Chen
,
N.
, and
Tsui
,
K. L.
,
2013
, “
Condition Monitoring and Remaining Useful Life Prediction Using Degradation Signals: Revisited
,”
IIE Trans.
,
45
(
9
), pp.
939
952
. 10.1080/0740817X.2012.706376
119.
Prakash
,
G.
,
Narasimhan
,
S.
, and
Pandey
,
M. D.
,
2018
, “
A Probabilistic Approach to Remaining Useful Life Prediction of Rolling Element Bearings
,”
Struct. Health. Monit.
,
3
, p.
1475921718758517
.
120.
Wang
,
X.
,
Jiang
,
P.
,
Guo
,
B.
, and
Cheng
,
Z.
,
2014
, “
Real-Time Reliability Evaluation for An Individual Product Based on Change-Point Gamma and Wiener Process
,”
Q. Reliab. Eng. Int.
,
30
(
4
), pp.
513
525
. 10.1002/qre.1504
121.
Feng
,
J.
,
Sun
,
Q.
, and
Jin
,
T.
,
2012
, “
Storage Life Prediction for a High-Performance Capacitor Using Multi-Phase Wiener Degradation Model
,”
Commun. Stat.- Simulation Comput.
,
41
(
8
), pp.
1317
1335
. 10.1080/03610918.2011.624241
122.
Jackson
,
P.
,
1998
,
Introduction to Expert Systems
,
Addison-Wesley Longman Publishing Co Inc.
,
Boston, MA
.
123.
Liao
,
S.-H.
,
2005
, “
Expert System Methodologies and Applications–a Decade Review From 1995 to 2004
,”
Expert syst. Appl.
,
28
(
1
), pp.
93
103
. 10.1016/j.eswa.2004.08.003
124.
Salvaneschi
,
P.
,
Cedei
,
M.
, and
Lazzari
,
M.
,
1996
, “
Applying AI to Structural Safety Monitoring and Evaluation
,”
IEEE Expert
,
11
(
4
), pp.
24
34
. 10.1109/64.511774
125.
Majidian
,
A.
, and
Saidi
,
M.
,
2007
, “
Comparison of Fuzzy Logic and Neural Network in Life Prediction of Boiler Tubes
,”
Int. J. Fatigue.
,
29
(
3
), pp.
489
498
. 10.1016/j.ijfatigue.2006.05.001
126.
Symans
,
M. D.
, and
Kelly
,
S. W.
,
1999
, “
Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-Active Seismic Isolation Systems
,”
Earthquake Eng. Struct. Dyn.
,
28
(
1
), pp.
37
60
. 10.1002/(SICI)1096-9845(199901)28:1<37::AID-EQE803>3.0.CO;2-Z
127.
Pourzeynali
,
S.
,
Lavasani
,
H.
, and
Modarayi
,
A.
,
2007
, “
Active Control of High Rise Building Structures Using Fuzzy Logic and Genetic Algorithms
,”
Eng. Struct.
,
29
(
3
), pp.
346
357
. 10.1016/j.engstruct.2006.04.015
128.
Ross
,
T. J.
,
2009
,
Fuzzy Logic with Engineering Applications
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
129.
Sun
,
H.
,
Cao
,
D.
,
Zhao
,
Z.
, and
Kang
,
X.
,
2018
, “
A Hybrid Approach to Cutting Tool Remaining Useful Life Prediction Based on the Wiener Process
,”
IEEE Trans. Reliab.
,
67
(
3
), pp.
1294
1303
. 10.1109/TR.2018.2831256
130.
Garga
,
A. K.
,
McClintic
,
K. T.
,
Campbell
,
R. L.
,
Yang
,
C.-C.
,
Lebold
,
M. S.
,
Hay
,
T. A.
, and
Byington
,
C. S.
,
2001
, “
Hybrid Reasoning for Prognostic Learning in Cbm Systems
,”
2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542)
,
Big Sky, MT
,
Mar. 10–17
.
131.
Byington
,
C. S.
,
Watson
,
M.
, and
Edwards
,
D.
,
2004
, “
Data-driven Neural Network Methodology to Remaining Life Predictions for Aircraft Actuator Components
,”
2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720)
,
Big Sky, MT
,
Mar. 6–13
.
132.
Prakash
,
G.
, and
Narasimhan
,
S.
,
2017
, “
Bayesian Two-Phase Gamma Process Model for Damage Detection and Prognosis
,”
J. Eng. Mech.
,
144
(
2
), p.
04017158
. 10.1061/(ASCE)EM.1943-7889.0001386
133.
Xu
,
D.
,
Wei
,
Q.
,
Chen
,
Y.
, and
Kang
,
R.
,
2015
, “
Reliability Prediction Using Physics–Statistics-Based Degradation Model
,”
IEEE Trans. Components, Packaging Manufacturing Technol.
,
5
(
11
), pp.
1573
1581
. 10.1109/TCPMT.2015.2483783
134.
Liu
,
J.
,
Wang
,
W.
,
Ma
,
F.
,
Yang
,
Y.
, and
Yang
,
C.
,
2012
, “
A Data-Model-Fusion Prognostic Framework for Dynamic System State Forecasting
,”
Eng. Appl. Artificial Intellig.
,
25
(
4
), pp.
814
823
. 10.1016/j.engappai.2012.02.015
135.
Mohanty
,
S.
,
Teale
,
R.
,
Chattopadhyay
,
A.
,
Peralta
,
P.
, and
Willhauck
,
C.
,
2007
, “
Mixed Gaussian Process and State-space Approach for Fatigue Crack Growth Prediction
,”
International Workshop on Structural Heath Monitoring
,
Stanford, CA
,
Sept. 11–13
.
136.
Gobbato
,
M.
,
Kosmatka
,
J. B.
, and
Conte
,
J. P.
,
2014
, “
A Recursive Bayesian Approach for Fatigue Damage Prognosis: An Experimental Validation At the Reliability Component Level
,”
Mech. Syst. Signal Process.
,
45
(
2
), pp.
448
467
. 10.1016/j.ymssp.2013.10.014
137.
Prakash
,
G.
,
Sadhu
,
A.
,
Narasimhan
,
S.
, and
Brehe
,
J.-M.
,
2018
, “
Initial Service Life Data Towards Structural Health Monitoring of a Concrete Arch Dam
,”
Struct. Control Health Monitoring
,
25
(
1
), p.
e2036
. 10.1002/stc.2036
138.
Tobon-Mejia
,
D.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Tripot
,
G.
,
2011
, “
Hidden Markov Models for Failure Diagnostic and Prognostic
,”
Prognostics and System Health Management Conference (PHM-Shenzhen)
,
Shenzhen, China
,
May 24–25
.
139.
Tobon-Mejia
,
D. A.
,
Medjaher
,
K.
,
Zerhouni
,
N.
, and
Tripot
,
G.
,
2012
, “
A Data-Driven Failure Prognostics Method Based on Mixture of Gaussian Hidden Markov Models
,”
IEEE Trans. Reliab.
,
61
(
2
), pp.
491
503
. 10.1109/TR.2012.2194177
140.
Dong
,
M.
, and
He
,
D.
,
2007
, “
Hidden semi-Markov Model-Based Methodology for Multi-sensor Equipment Health Diagnosis and Prognosis
,”
Eur. J. Operat. Res.
,
178
(
3
), pp.
858
878
. 10.1016/j.ejor.2006.01.041
141.
Dong
,
M.
,
He
,
D.
,
Banerjee
,
P.
, and
Keller
,
J.
,
2006
, “
Equipment Health Diagnosis and Prognosis Using Hidden semi-Markov Models
,”
Int. J. Adv. Manuf. Technol.
,
30
(
7–8
), pp.
738
749
. 10.1007/s00170-005-0111-0
142.
Ocak
,
H.
, and
Loparo
,
K. A.
,
2005
, “
HMM-Based Fault Detection and Diagnosis Scheme for Rolling Element Bearings
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
299
306
. 10.1115/1.1924636
143.
Purushotham
,
V.
,
Narayanan
,
S.
, and
Prasad
,
S. A.
,
2005
, “
Multi-fault Diagnosis of Rolling Bearing Elements Using Wavelet Analysis and Hidden Markov Model Based Fault Recognition
,”
Ndt & E Int.
,
38
(
8
), pp.
654
664
. 10.1016/j.ndteint.2005.04.003
144.
Morcous
,
G.
,
2006
, “
Performance Prediction of Bridge Deck Systems Using Markov Chains
,”
J. Perfor. Construct. Facilities
,
20
(
2
), pp.
146
155
. 10.1061/(ASCE)0887-3828(2006)20:2(146)
145.
Morcous
,
G.
,
Lounis
,
Z.
, and
Mirza
,
M.
,
2003
, “
Identification of Environmental Categories for Markovian Deterioration Models of Bridge Decks
,”
J. Bridge Eng.
,
8
(
6
), pp.
353
361
. 10.1061/(ASCE)1084-0702(2003)8:6(353)
146.
Kallen
,
M. J.
, and
Noortwijk
,
J. M. V.
,
2006
, “
Statistical Inference for Markov Deterioration Models of Bridge Conditions in the Netherlands
,”
Third International Conference on Bridge Maintenance, Safety and Management (IABMAS) (2006)
,
Porto, Portugal
,
July 16–19
.
147.
Ng
,
S. K.
, and
Moses
,
F.
,
1998
, “
Bridge Deterioration Modeling Using Semi-Markov Theory
,”
Proceedings of ICOSSAR '97, the 7th International Conference on Structural Safety and Reliability
,
Kyoto, Japan
,
Nov. 24–28, 1997
,
CRC Press
, Vol.
1
, pp.
113
120
.
148.
Huang
,
X.
, and
Chen
,
J.
,
2014
, “
Time-Dependent Reliability Model of Deteriorating Structures Based on Stochastic Processes and Bayesian Inference Methods
,”
J. Eng. Mech.
,
141
(
3
), p.
04014123
. 10.1061/(ASCE)EM.1943-7889.0000845
149.
Pandey
,
M. D.
,
Yuan
,
X. X.
, and
van Noortwijk
,
J. M.
,
2005
, “
Gamma Process Model for Reliability Analysis and Replacement of Aging Structural Components
,”
Ninth International Conference on Structural Safety and Reliability
,
Rome, Italy
,
June 19–23
.
150.
Lu
,
D.
,
Pandey
,
M. D.
, and
Xie
,
W.-C.
,
2013
, “
An Efficient Method for the Estimation of Parameters of Stochastic Gamma Process From Noisy Degradation Measurements
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
227
(
4
), pp.
425
433
.
151.
Van Noortwijk
,
J.
, and
Pandey
,
M. D.
,
2003
, “
A Stochastic Deterioration Process for Time-dependent Reliability Analysis
,”
Proceedings of the Eleventh IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems
,
Banff, Canada
,
Nov. 2–5
,
Taylor & Francis Group
.
152.
Pan
,
Z.
, and
Balakrishnan
,
N.
,
2011
, “
Reliability Modeling of Degradation of Products With Multiple Performance Characteristics Based on Gamma Processes
,”
Reliab. Eng. Syst. Safety
,
96
(
8
), pp.
949
957
. 10.1016/j.ress.2011.03.014
153.
Tsai
,
C. C.
,
Tseng
,
S. T.
, and
Balakrishnan
,
N.
,
2012
, “
Optimal Design for Degradation Tests Based on Gamma Processes With Random Effects
,”
IEEE Trans. Reliab.
,
61
(
2
), pp.
604
613
. 10.1109/TR.2012.2194351
154.
Cheng
,
T.
,
Pandey
,
M. D.
, and
van der Weide
,
J. A.
,
2012
, “
The Probability Distribution of Maintenance Cost of a System Affected by the Gamma Process of Degradation: Finite Time Solution
,”
Reliab. Eng. Syst. Safety
,
108
(
12
), pp.
65
76
. 10.1016/j.ress.2012.06.005
155.
Strauss
,
A.
,
Wan-Wendner
,
R.
,
Vidovic
,
A.
,
Zambon
,
I.
,
Yu
,
Q.
,
Frangopol
,
D. M.
, and
Bergmeister
,
K.
,
2017
, “
Gamma Prediction Models for Long-Term Creep Deformations of Prestressed Concrete Bridges
,”
J. Civ. Eng. Manag.
,
23
(
6
), pp.
681
698
. 10.3846/13923730.2017.1335652
156.
Iervolino
,
I.
,
Giorgio
,
M.
, and
Chioccarelli
,
E.
,
2013
, “
Gamma Degradation Models for Earthquake-Resistant Structures
,”
Struct. Safety
,
45
(
11
), pp.
48
58
. 10.1016/j.strusafe.2013.09.001
157.
Whitmore
,
G. a.
,
Crowder
,
M. J.
, and
Lawless
,
J. F.
,
1998
, “
Failure Inference From a Marker Process Based on a Bivariate Wiener Model.
,”
Lifetime Data Anal.
,
4
(
3
), pp.
229
251
. 10.1023/A:1009617814586
158.
Li
,
J.
,
Wang
,
Z.
,
Zhang
,
Y.
,
Fu
,
H.
,
Liu
,
C.
, and
Krishnaswamy
,
S.
,
2017
, “
Degradation Data Analysis Based on a Generalized Wiener Process Subject to Measurement Error
,”
Mech. Syst. Signal Proc.
,
94
(
9
), pp.
57
72
. 10.1016/j.ymssp.2017.02.031
159.
Wang
,
X.
,
Jiang
,
P.
,
Guo
,
B.
, and
Cheng
,
Z.
,
2014
, “
Real-time Reliability Evaluation With a General Wiener Process-Based Degradation Model
,”
Q. Reliab. Eng. Int.
,
30
(
2
), pp.
205
220
. 10.1002/qre.1489
160.
Chen
,
N.
,
Ye
,
Z.-S.
,
Xiang
,
Y.
, and
Zhang
,
L.
,
2015
, “
Condition-Based Maintenance Using the Inverse Gaussian Degradation Model
,”
Eur. J. Oper. Res.
,
243
(
1
), pp.
190
199
. 10.1016/j.ejor.2014.11.029
161.
Qin
,
H.
,
Zhang
,
S.
, and
Zhou
,
W.
,
2013
, “
Inverse Gaussian Process-Based Corrosion Growth Modeling and Its Application in the Reliability Analysis for Energy Pipelines
,”
Frontiers Struct. Civil Eng.
,
7
(
3
), pp.
276
287
. 10.1007/s11709-013-0207-9
162.
Pragalath
,
H.
,
Seshathiri
,
S.
,
Rathod
,
H.
,
Esakki
,
B.
, and
Gupta
,
R.
,
2018
, “
Deterioration Assessment of Infrastructure Using Fuzzy Logic and Image Processing Algorithm
,”
J. Perform. Construct. Facilities
,
32
(
2
), p.
04018009
. 10.1061/(ASCE)CF.1943-5509.0001151
You do not currently have access to this content.