Abstract

Defect imaging algorithms play an important role in Lamb waves based researches of nondestructive testing (NDT) and structural health monitoring (SHM). In classical algorithms, the location or distribution of defects is visualized through mapping the amplitude or phase information of signals gotten by multiple inspection pairs from the time domain to every discrete spatial grid of plates. It is time-consuming in the detection of plates with large size and many transducers. Transforming the defect imaging problem into a scattering source search problem, an intelligent defect localization algorithm was proposed for NDT and SHM with the Lamb waves and sparse array. In the algorithm, the elliptic trajectory-dependent individuals of every inspection pair were extracted first, then the defect position was identified by analyzing the distribution of individuals these located at the intersection of multiply elliptic trajectories. Considering the fuzzy and diversity characteristics in the detection of defects, a fuzzy control parameter and an adaptive individual updating strategy based on the k-means algorithm were introduced to ensure the robustness of the algorithm. The effectiveness of the proposed algorithm was verified by numerical models and experiments. The influences of the fuzzy control parameter and the individual updating strategy on the performance of the algorithm were analyzed furthermore.

References

References
1.
Li
,
Z.
,
He
,
C.
,
Liu
,
Z.
, and
Wu
,
B.
,
2019
, “
Quantitative Detection of Lamination Defect in Thin-Walled Metallic Pipe by Using Circumferential Lamb Waves Based on Wavenumber Analysis Method
,”
NDT E. Int.
,
102
, pp.
56
67
. 10.1016/j.ndteint.2018.11.005
2.
Wahab
,
M. A.
,
Zhou
,
Y. L.
, and
Maia
,
N. M. M.
,
2018
,
Structural Health Monitoring From Sensing to Processing
,
IntechOpen
,
London
, pp.
61
86
.
3.
Giurgiutiu
,
V.
,
2010
, “
Structural Health Monitoring With Piezoelectric Wafer Active Sensors—Predictive Modeling and Simulation
,”
INCAS—Natl. Inst. Aerospace Res. “Elie Carafoli”
,
2
(
3
), pp.
31
44
.
4.
Wahab
,
M. A.
,
Zhou
,
Y. L.
, and
Maia
,
N. M. M.
,
2018
,
Structural Health Monitoring From Sensing to Processing
,
IntechOpen
,
London
, pp.
87
115
.
5.
Croxford
,
A. J.
,
Wilcox
,
P. D.
,
Drinkwater
,
B. W.
, and
Konstantinidis
,
G.
,
2007
, “
Strategies for Guided-Wave Structural Health Monitoring
,”
P. Roy. Soc. A-Math. Phys. Eng. Sci.
,
463
(
2087
), pp.
2961
2981
. 10.1098/rspa.2007.0048
6.
Liu
,
Z. H.
,
Yu
,
F. X.
,
Wei
,
R.
, and
He
,
C. H.
,
2013
, “
Image Fusion Based on Single-Frequency Guided Wave Mode Signals for Structural Health Monitoring in Composite Plate
,”
Mater. Eval.
,
71
(
12
), pp.
1434
1443
.
7.
Muller
,
A.
,
Robertson-Welsh
,
B.
,
Gaydecki
,
P.
,
Gresil
,
M.
, and
Soutis
,
C.
,
2017
, “
Structural Health Monitoring Using Lamb Wave Reflections and Total Focusing Method for Image Reconstruction
,”
Appl. Compos. Mater.
,
24
(
2
), pp.
553
573
. 10.1007/s10443-016-9549-5
8.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2007
, “
Guided Wave Signal Processing and Image Fusion for In Situ Damage Localization in Plates
,”
Wave Motion
,
44
(
6
), pp.
482
492
. 10.1016/j.wavemoti.2007.02.008
9.
Sorrentino
,
A.
, and
De Fenza
,
A.
,
2016
, “
Improved Elliptical Triangulation Method for Damage Detection in Composite Material Structures
,”
Proc. Inst. Mech. Eng. Part C-J: Eng. Mech. Eng. Sci.
,
231
(
16
), pp.
3011
3023
. 10.1177/0954406216682053
10.
Shan
,
S.
,
Qiu
,
J.
,
Zhang
,
C.
,
Ji
,
H.
, and
Cheng
,
L.
,
2016
, “
Multi-Damage Localization on Large Complex Structures Through an Extended Delay-and-Sum Based Method
,”
Struct. Health Monit.
,
15
(
1
), pp.
50
64
. 10.1177/1475921715623358
11.
Flynn
,
E. B.
,
Todd
,
M. D.
,
Wilcox
,
P. D.
,
Drinkwater
,
B. W.
, and
Croxford
,
A. J.
,
2011
, “
Maximum-Likelihood Estimation of Damage Location in Guided-Wave Structural Health Monitoring
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
,
467
(
2133
), pp.
2575
2596
. 10.1098/rspa.2011.0095
12.
Dokeroglu
,
T.
,
Sevinc
,
E.
,
Kucukyilmaz
,
T.
, and
Cosar
,
A.
,
2019
, “
A Survey on New Generation Metaheuristic Algorithms
,”
Comput. Ind. Eng.
,
137
, p.
106040
. 10.1016/j.cie.2019.106040
13.
Tan
,
Y.
, and
Zhu
,
Y. C.
,
2010
, “
Fireworks Algorithm for Optimization
,”
1st International Conference on Swarm Intelligence
,
Beijing
,
June 12–15
, pp.
355
364
.
14.
Satyanarayan
,
L.
,
Kumaran
,
K. B.
,
Krishnamurthy
,
C.
, and
Balasubramaniam
,
K.
,
2008
, “
Inverse Method for Detection and Sizing of Cracks in Thin Sections Using a Hybrid Genetic Algorithm Based Signal Parametrization
,”
Theor. Appl. Fract. Mech.
,
49
(
2
), pp.
185
198
. 10.1016/j.tafmec.2007.11.004
15.
Demirli
,
R.
, and
Saniie
,
J.
,
2014
, “
Asymmetric Gaussian Chirplet Model and Parameter Estimation for Generalized Echo Representation
,”
J. Frankl. Inst.
,
351
(
2
), pp.
907
921
. 10.1016/j.jfranklin.2013.09.028
16.
Bustillo
,
J.
,
Fortineau
,
J.
,
Gautier
,
M.
, and
Lethiecq
,
M.
,
2014
, “
Ultrasonic Characterization of Porous Silicon Using a Genetic Algorithm to Solve the Inverse Problem
,”
NDT E. Int.
,
62
, pp.
93
98
. 10.1016/j.ndteint.2013.11.007
17.
Marzani
,
A.
, and
De Marchi
,
L.
,
2013
, “
Characterization of the Elastic Moduli in Composite Plates via Dispersive Guided Waves Data and Genetic Algorithms
,”
J. Intel. Mat. Syst. Struct.
,
24
(
17
), pp.
2135
2147
. 10.1177/1045389X12462645
18.
Chen
,
S. J.
,
Zhou
,
S. P.
,
Chen
,
C. F.
,
Li
,
Y.
, and
Zhai
,
S. M.
,
2019
, “
Detection of Double Defects for Plate-Like Structures Based on a Fuzzy c-Means Clustering Algorithm
,”
Struct. Health Monit.
,
18
(
3
), pp.
150
165
.
19.
Yan
,
G.
,
Zhou
,
L. L.
, and
Yuan
,
F. G.
,
2005
, “
Wavelet-Based Built-in Damage Detection and Identification for Composites
,”
Smart Structures and Materials 2005 Conference
,
San Diego
,
Mar. 7–10
, pp.
324
334
.
20.
Andhale
,
Y. S.
,
Masurkar
,
F. A.
, and
Yelve
,
N. P.
,
2019
, “
Localization of Damages in Plain and Riveted Aluminium Specimens Using Lamb Waves
,”
Int. J. Acoust. Vib.
,
24
(
1
), pp.
150
165
. 10.20855/ijav.2019.24.11485
21.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2007
, “
k-Means++: The Advantages of Careful Seeding
,”
18th Annual ACM-SIAM Symposium on Discrete Algorithms
,
New Orleans
,
Jan. 7–9
, pp.
1027
1035
.
22.
Samaratunga
,
D.
, and
Jha
,
R.
,
2012
, “
Lamb Wave Propagation Simulation in Smart Composite Structures
,”
SIMULIA Community Conference
,
Providence, RI
,
May 15–17
, pp.
1
11
.
You do not currently have access to this content.