Abstract

Timber poles are widely used in electricity transmission and telecommunication sectors throughout the world. The stress wave propagation for the condition assessment of timber poles is identified as a promising non-destructive testing (NDT) technique due to its simplicity and cost-effectiveness compared to other traditional methods. In this paper, a novel damage severity evaluation criterion for timber poles is proposed on the basis of short-time wavelet entropy of the reflected stress waves. The stress waves are generated by transverse impacts close to the ground level of the pole. The reflected stress waves are recorded and processed in the time frequency domain using the discrete wavelet transform. The decomposed signal components using discrete wavelet analysis are used to determine the wavelet entropy. The wavelet entropies of intact and damaged poles are compared to obtain the relative wavelet entropy (RWE) for damage severity estimation. Further, a numerical model for an in situ pole system is developed to simulate the transverse stress wave propagation and to evaluate the capability of the proposed defect severity estimation method. The developed numerical model is validated with experimental data from controlled testing and the data from field tests. The validated numerical model is then used to simulate different defect scenarios. The wavelet entropy is sensitive to the damage severity in timber poles and can be used as an effective tool to evaluate the severity of damages.

References

References
1.
Francis
,
L.
, and
Norton
,
J.
,
2006
, Australian Timber Pole Resources for Energy Networks. A Review.
2.
Nguyen
,
M.
,
Foliente
,
G.
, and
Wang
,
X. M.
,
2004
, “
State-of-the-Practice & Challenges in Non-Destructive Evaluation of Utility Poles in Service
,”
Key Engineering Materials
, pp.
1521
1528
. https://doi.org/10.4028/www.scientific.net/KEM.270-273.1521
3.
Mudiyanselage
,
S. N.
,
Rajeev
,
P.
,
Gad
,
E.
,
Sriskantharajah
,
B.
, and
Flatley
,
I.
,
2020
,
ACMSM25
,
Springer
,
Singapore
, pp.
941
951
. https://doi.org/10.1007/978-981-13-7603-0_89
4.
Subhani
,
M.
,
Li
,
J.
,
Samali
,
B.
, and
Yan
,
N.
,
2013
, “
Determination of the Embedded Lengths of Electricity Timber Poles Utilising Flexural Wave Generated From Impactí
,”
Australian J. Struct. Eng.
,
14
(
1
), pp.
85
96
. 10.7158/S12-047.2013.14.1
5.
Hao
,
H.
, and
Xia
,
Y.
,
2002
, “
Vibration-Based Damage Detection of Structures by Genetic Algorithm
,”
J. Comput. Civil Eng.
,
16
(
3
), pp.
222
229
. 10.1061/(ASCE)0887-3801(2002)16:3(222)
6.
Samali
,
B.
,
Li
,
J.
,
Dackermann
,
U.
, and
Choi
,
F. C.
,
2014
,
Vibration-Based Damage Detection for Timber Structures in Australia
,
Structural Health Monitoring Australia
, pp.
117
144
. http://hdl.handle.net/10453/17755
7.
Tanasoiu
,
V.
,
Miclea
,
C.
, and
Tanasoiu
,
C.
,
2002
, “
Nondestructive Testing Techniques and Piezoelectric Ultrasonics Transducers for Wood and Built in Wooden Structures
,”
J. Optoelectron. Adv. Mater.
,
4
(
4
), pp.
949
957
.
8.
Mudiyanselage
,
S.
,
Rajeev
,
P.
,
Gad
,
E.
,
Sriskantharajah
,
B.
, and
Flatley
,
I.
,
2019
, “
Application of Stress Wave Propagation Technique for Condition Assessment of Timber Poles
,”
Struct. Infrastruct. Eng.
,
15
(
9
), pp.
1234
1246
. 10.1080/15732479.2019.1610463
9.
Sriskantharajah
,
B.
,
2016
, “
Timber Pole Integrity Testing
,”
Doctoral dissertation
,
Swinburne University of Technology
.
10.
Sriskantharajah
,
B.
,
Gad
,
E.
,
Bandara
,
S.
,
Rajeev
,
P.
, and
Flatley
,
I.
,
2020
, “
Condition Assessment Tool for Timber Utility Poles Using Stress Wave Propagation Technique
,”
Nondestruct Test Eva
, pp.
1
21
. 10.1080/10589759.2020.1728267
11.
Bucur
,
V.
,
2006
,
Acoustics of Wood
,
Springer Science & Business Media
.
12.
Turner
,
M. J.
,
1997
,
Integrity Testing in Piling Practice
, Vol.
144
,
Construction Industry Research and Information Association
.
13.
Dackermann
,
U.
,
Skinner
,
B.
, and
Li
,
J.
,
2014
, “
Guided Wave–Based Condition Assessment of In Situ Timber Utility Poles Using Machine Learning Algorithms
,”
Struct. Health. Monit.
,
13
(
4
), pp.
374
388
. 10.1177/1475921714521269
14.
Yu
,
Y.
,
Dackermann
,
U.
,
Li
,
J.
, and
Subhani
,
M.
,
2016
, “
Condition Assessment of Timber Utility Poles Based on a Hierarchical Data Fusion Model
,”
J. Comput. Civil Eng.
,
30
(
5
), p.
04016010
. 10.1061/(ASCE)CP.1943-5487.0000563
15.
Yu
,
Y.
,
Subhani
,
M.
,
Dackermann
,
U.
, and
Li
,
J.
,
2019
, “
Novel Hybrid Method Based on Advanced Signal Processing and Soft Computing Techniques for Condition Assessment of Timber Utility Poles
,”
J. Aerospace Eng.
,
32
(
4
), p.
04019032
. 10.1061/(ASCE)AS.1943-5525.0001019
16.
Gabor
,
D.
,
1946
, “
Theory of Communication. Part 1: The Analysis of Information
,”
J. Inst. Electr. Eng.-Part III: Radio Commun. Eng.
,
93
(
26
), pp.
429
441
. 10.1049/ji-3-2.1946.0074
17.
Stark
,
H.-G.
,
2005
,
Wavelets and Signal Processing: An Application-Based Introduction
,
Springer Science & Business Media
.
18.
Addison
,
P. S.
,
2017
,
The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance
,
CRC Press
.
19.
Ibáñez
,
F.
,
Baltazar
,
A.
, and
Mijarez
,
R.
,
2015
, “
Detection of Damage in Multiwire Cables Based on Wavelet Entropy Evolution
,”
Smart Mater. Struct.
,
24
(
8
), p.
085036
. 10.1088/0964-1726/24/8/085036
20.
Mallat
,
S. G.
,
1989
, “
A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
,”
IEEE Trans. Pattern Anal. Machine Intell.
,
11
(
7
), pp.
674
693
. 10.1109/34.192463
21.
Ren
,
W.-X.
, and
Sun
,
Z.-S.
,
2008
, “
Structural Damage Identification by Using Wavelet Entropy
,”
Eng. Struct.
,
30
(
10
), pp.
2840
2849
. 10.1016/j.engstruct.2008.03.013
22.
Shannon
,
C. E.
,
2001
, “
A Mathematical Theory of Communication. ACM SIGMOBILE Mob
,”
Comput. Commun. Rev
,
5
(
1
), pp.
3
55
. 10.1145/584091.584093
23.
Rosso
,
O. A.
,
Blanco
,
S.
,
Yordanova
,
J.
,
Kolev
,
V.
,
Figliola
,
A.
,
Schürmann
,
M.
, and
Başar
,
E.
,
2001
, “
Wavelet Entropy: A new Tool for Analysis of Short Duration Brain Electrical Signals
,”
J. Neurosci. Met.
,
105
(
1
), pp.
65
75
. 10.1016/S0165-0270(00)00356-3
24.
He
,
C.
,
Xing
,
J.
,
Li
,
J.
,
Qian
,
W.
, and
Zhang
,
X.
,
2015
, “
A New Structural Damage Identification Method Based on Wavelet Packet Energy Entropy of Impulse Response
,”
Open Civil Eng. J.
,
9
(
1
), pp.
570
576
. https://doi.org/10.2174/1874149501509010570
25.
Bandara
,
S.
,
Rajeev
,
P.
,
Gad
,
E.
,
Sriskantharajah
,
B.
, and
Flatley
,
I.
,
2019
, “
Damage Detection of In-Service Timber Poles Using Hilbert-Huang Transform
,”
NDT E Int.
,
107
, p.
102141
. 10.1016/j.ndteint.2019.102141
26.
Yan
,
N.
,
2015
, “
Numerical Modelling and Condition Assessment of Timber Utility Poles Using Stress Wave Techniques
,”
Doctoral dissertation
,
University of Technology
,
Sydney
.
27.
Brémaud
,
I.
,
Minato
,
K.
, and
Thibaut
,
B.
,
2009
, Mechanical Damping of Wood as Related to Species Classification: A Preliminary Survey.
28.
Leinov
,
E.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
2015
, “
Investigation of Guided Wave Propagation and Attenuation in Pipe Buried in Sand
,”
J. Sound Vib.
,
347
, pp.
96
114
. 10.1016/j.jsv.2015.02.036
29.
Yu
,
Y.
, and
Yan
,
N.
,
2017
, “
Numerical Study on Guided Wave Propagation in Wood Utility Poles: Finite Element Modelling and Parametric Sensitivity Analysis
,”
Appl. Sci.
,
7
(
10
), p.
1063
. 10.3390/app7101063
You do not currently have access to this content.