Abstract

A commonly acknowledged barrier for the adoption of new computer-assisted orthopedic surgery (CAOS) technologies relates to a perceived long and steep learning curve. However, this perception has not been objectively tested with the consideration of surgeon-specific learning approaches. This study employed the cumulative sum control chart (CUSUM) to investigate individual surgeon's learning of CAOS technology by monitoring the stability of the surgical process regarding surgical time. Two applications for total knee arthroplasty (TKA) and two applications for total shoulder arthroplasty (TSA) provided by a modern CAOS system were assessed with a total of 21 surgeons with different levels of previous CAOS experience. The surgeon-specific learning durations identified by CUSUM method revealed that CAOS applications with “full guidance” (i.e., those that offer comprehensive guidance, full customization, and utilize CAOS-specific instrumentation) required on average less than ten cases to learn, while the streamlined application designed as a CAOS augmentation of existing mechanical instrumentation demonstrated a minimal learning curve (less than three cases). During the learning phase, the increase in surgical time was found to be moderate (approximately 15 min or less) for the “full guidance” applications, while the streamlined CAOS application only saw a clinically negligible time increase (under 5 min). The CUSUM method provided an objective and consistent measurement on learning, and demonstrated, contrary to common perception, a minimal to modest learning curve required by the modern CAOS system studied.

References

1.
Macario
,
A.
,
2010
, “
What Does One Minute of Operating Room Time Cost?
J. Clin. Anesth.
,
22
(
4
), pp.
233
236
.10.1016/j.jclinane.2010.02.003
2.
Kurtz
,
S.
,
Ong
,
K.
,
Lau
,
E.
,
Mowat
,
F.
, and
Halpern
,
M.
,
2007
, “
Projections of Primary and Revision Hip and Knee Arthroplasty in the United States From 2005 to 2030
,”
J. Bone Jt. Surg. Am.
,
89
(
4
), pp.
780
785
.10.2106/00004623-200704000-00012
3.
Cheng
,
T.
,
Zhao
,
S.
,
Peng
,
X.
, and
Zhang
,
X.
,
2012
, “
Does Computer Assisted Surgery Improve Postoperative Leg Alignment and Implant Positioning Following Total Knee Arthroplasty? A Meta-Analysis of Randomized Controlled Trials?
Knee Surg. Sports Traumatol. Arthrosc.
,
20
(
7
), pp.
1307
1322
.10.1007/s00167-011-1588-8
4.
Xu
,
K.
,
Li
,
Y. M.
,
Zhang
,
H. F.
,
Wang
,
C. G.
,
Xu
,
Y. Q.
, and
Li
,
Z. J.
,
2014
, “
Computer Navigation in Total Hip Arthroplasty: A Meta-Analysis of Randomized Controlled Trials
,”
Int. J. Surg.
,
12
(
5
), pp.
528
533
.10.1016/j.ijsu.2014.02.014
5.
Jones
,
R. B.
,
Greene
,
A. T.
,
Polakovic
,
S. V.
,
Hamilton
,
M. A.
,
Mohajer
,
N. J.
,
Youderian
,
A. R.
,
Parsons
,
I. M.
,
Saadi
,
P. D.
, and
Cheung
,
E. V.
,
2020
, “
Accuracy and Precision of Placement of the Glenoid Baseplate in Reverse Total Shoulder Arthroplasty Using a Novel Computer Assisted Navigation System Combined With Preoperative Planning: A Controlled Cadaveric Study
,”
Semin. Arthroplasty JSES
,
30
(
1
), pp.
73
82
.10.1053/j.sart.2020.05.004
6.
Australian Orthopaedic Association National Joint Replacement Registry (AOA NJRR),
2018
, “
Hip, Knee & Shoulder Arthroplasty: 2018 Annual Report
,”
SAHMRI
,
Adelaide, South Australia
.https://www.researchgate.net/publication/328320257_2018_Hip_Knee_Shoulder_Arthroplasty_Annual_Report
7.
Krackow
,
K. A.
,
Bayers-Thering
,
M.
,
Phillips
,
M. J.
,
Bayers-Thering
,
M.
, and
Mihalko
,
W. M.
,
1999
, “
A New Technique for Determining Proper Mechanical Axis Alignment During Total Knee Arthroplasty: Progress Toward Computer-Assisted TKA
,”
Orthopedics
,
22
(
7
), pp.
698
702
.https://pubmed.ncbi.nlm.nih.gov/10418867/
8.
Antonios
,
J. K.
,
Korber
,
S.
,
Sivasundaram
,
L.
,
Mayfield
,
C.
,
Kang
,
H. P.
,
Oakes
,
D. A.
, and
Heckmann
,
N. D.
,
2019
, “
Trends in Computer Navigation and Robotic Assistance for Total Knee Arthroplasty in the United States: An Analysis of Patient and Hospital Factors
,”
Arthroplasty Today
,
5
(
1
), pp.
88
95
.10.1016/j.artd.2019.01.002
9.
Hsiue
,
P. P.
,
Chen
,
C. J.
,
Villalpando
,
C.
,
Ponzio
,
D.
,
Khoshbin
,
A.
, and
Stavrakis
,
A. I.
,
2020
, “
Trends and Patient Factors Associated With Technology-Assisted Total Hip Arthroplasty in the United States From 2005 to 2014
,”
Arthroplasty Today
,
6
(
1
), pp.
112
117.e1
.10.1016/j.artd.2019.12.009
10.
Whittaker
,
J. P.
,
Dwyer
,
K. A.
,
Howard
,
J.
,
Huey
,
V.
,
Lesko
,
J.
,
Nunley
,
R. M.
, and
Verdonk
,
P.
,
2018
, “
Learning Curve With a New Primary Total Knee Arthroplasty Implant: A Multicenter Perspective With More Than 2000 Patients
,”
Arthroplasty Today
,
4
(
3
), pp.
348
353
.10.1016/j.artd.2018.05.004
11.
Sodhi
,
N.
,
Khlopas
,
A.
,
Piuzzi
,
N. S.
,
Sultan
,
A. A.
,
Marchand
,
R. C.
,
Malkani
,
A. L.
, and
Mont
,
M. A.
,
2018
, “
The Learning Curve Associated With Robotic Total Knee Arthroplasty
,”
J. Knee Surg.
,
31
(
01
), pp.
017
021
[
Erratum in J. Knee Surg
.
2018
;
31
(
4
):
370
].10.1055/s-0037-1608809
12.
Smith
,
B. R.
,
Deakin
,
A. H.
,
Baines
,
J.
, and
Picard
,
F.
,
2010
, “
Computer Navigated Total Knee Arthroplasty: The Learning Curve
,”
Comput. Aided Surg.
,
15
(
1–3
), pp.
40
48
.10.3109/10929088.2010.486559
13.
Jenny
,
J. Y.
,
Miehlke
,
R. K.
, and
Giurea
,
A.
,
2008
, “
Learning Curve in Navigated Total Knee Replacement. A Multi-Centre Study Comparing Experienced and Beginner Centres
,”
Knee
,
15
(
2
), pp.
80
84
.10.1016/j.knee.2007.12.004
14.
Chaput de Saintonge
,
D. M.
, and
Vere
,
D. W.
,
1974
, “
Why Don't Doctors Use CUSUMs?
,”
Lancet
,
1
(
7848
), pp.
120
121
.10.1016/s0140-6736(74)92345-9
15.
Wohl
,
H.
,
1977
, “
The CUSUM Plot: Its Utility in the Analysis of Clinical Data
,”
N. Engl. J. Med.
,
296
(
18
), pp.
1044
1045
.10.1056/NEJM197705052961806
16.
Bokhari
,
M. B.
,
Patel
,
C. B.
,
Ramos-Valadez
,
D. I.
,
Ragupathi
,
M.
, and
Haas
,
E. M.
,
2011
, « “
Learning Curve for Robotic-Assisted Laparoscopic Colorectal Surgery
,”
Surg. Endosc.
,
25
(
3
), pp.
855
860
.10.1007/s00464-010-1281-x
17.
Kayani
,
B.
,
Konan
,
S.
,
Huq
,
S. S.
,
Tahmassebi
,
J.
, and
Haddad
,
F. S.
,
2019
, “
Robotic-Arm Assisted Total Knee Arthroplasty Has a Learning Curve of Seven Cases for Integration Into the Surgical Workflow but No Learning Curve Effect for Accuracy of Implant Positioning
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
27
(
4
), pp.
1132
1141
.10.1007/s00167-018-5138-5
18.
Lakra
,
A.
,
Sarpong
,
N. O.
,
Jennings
,
E. L.
,
Grosso
,
M. J.
,
Cooper
,
H. J.
,
Shah
,
R. P.
, and
Geller
,
J. A.
,
2019
, “
The Learning Curve by Operative Time for Soft Tissue Balancing in Total Knee Arthroplasty Using Electronic Sensor Technology
,”
J. Arthroplasty
,
34
(
3
), pp.
483
487
.10.1016/j.arth.2018.11.014
19.
Dai
,
Y.
,
Bolch
,
C.
,
Jung
,
A.
,
Hamad
,
C.
,
Angibaud
,
L.
,
Stulberg
,
B. N.
, and
Huddleston
,
J. I.
,
2020
, “
Accuracy and Precision in Resection Alignment: Insights From 10,144 Clinical Cases Using a Contemporary Computer-Assisted Total Knee Arthroplasty System
,”
Knee
,
27
(
3
), pp.
1010
1017
.10.1016/j.knee.2020.02.024
20.
Rosenthal
,
Y.
,
Rettig
,
S. A.
,
Virk
,
M.
, and
Zuckerman
,
J. D.
,
2020
, “
The Impact of Preoperative Three-Dimensional Planning and Intraoperative Navigation of Shoulder Arthroplasty on Implant Selection and Operative Time: A Single Surgeon's Experience
,”
J. Shoulder Elbow Surg.
,
29
(
12
), pp.
2564
2570
.10.1016/j.jse.2020.03.041
21.
Carli
,
A.
,
Aoude
,
A.
,
Reuven
,
A.
,
Matache
,
B.
,
Antoniou
,
J.
, and
Zukor
,
D. J.
,
2014
, “
Inconsistencies Between Navigation Data and Radiographs in Total Knee Arthroplasty Are System Dependent and Affect Coronal Alignment
,”
Can. J. Surg.
,
57
(
5
), pp.
305
313
.10.1503/cjs.031313
You do not currently have access to this content.