Abstract

This study investigates the modeling and design of a floating vertical-axis wind turbine (FloatVAWT) system with multidisciplinary design optimization (MDO) and control co-design (CCD) approaches. By integrating various associated disciplinary models, the study aims to holistically optimize the physical and control designs of the FloatVAWT system. Through the identification of impactful design elements and capitalizing on synergistic interactions, the study aims to provide insights into subsystem designers and aid their detailed decisions. The model developed for this CCD framework utilizes automated geometric manipulation and mesh generation to explore various FloatVAWT configurations during the early design stages. Surrogate models facilitate efficient design studies within limited computing resources by exchanging model information between disciplinary models and subsystems without requiring extensive simulations during the optimization loop. The model incorporates an aero-hydro-servo dynamic representation of the FloatVAWT system, considering physical and control constraints. Additionally, the study investigates the potential benefits of varying both the average and intracycle rotational speeds of the VAWT rotor to enhance energy production and minimize adverse platform motions, thus reducing the levelized cost of energy. System-level design solutions are analyzed to identify design tradeoffs and propose mitigation strategies for potential mechanical failures of the rotor. In conclusion, this study provides modeling strategies for the FloatVAWT system and analyzes the system design solutions through MDO and CCD approaches. The outcomes of this study offer insights into system-optimal solutions for subsystem-level decisions considering multidisciplinary couplings.

References

1.
Lopez
,
A.
,
Green
,
R.
,
Williams
,
T.
,
Lantz
,
E.
,
Buster
,
G.
, and
Roberts
,
B.
,
2022
, “Offshore Wind Energy Technical Potential for the Contiguous United States.” Technical Report No. NREL/PR-6A20-83650, National Renewable Energy Laboratory. https://www.nrel.gov/docs/fy22osti/83650.pdf.
2.
Stehly
,
T.
,
Duffy
,
P.
, and
Hernando
,
D. M.
,
2023
, “2022 Cost of Wind Energy Review.”
Technical Report
No. NREL/PR-5000-88335. National Renewable Energy Laboratory.
3.
“A Low-Cost Floating Offshore Vertical Axis Wind System.” U. S. Department of Energy Advanced Research Projects Agency-Energy (2020). https://arpa-e.energy.gov/technologies/projects/low-cost-floating-offshore-vertical-axis-wind-system, Accessed March 12, 2024.
4.
Jonkman
,
J.
,
2013
, “
The New Modularization Framework for the FAST Wind Turbine CAE Tool
,” AIAA Aerospace Sciences Meeting, Grapevine, TX, Jan. 7–10, Paper No. AIAA 2013-0202.
5.
Marten
,
D.
,
2019
, “
QBlade: A Modern Tool for the Aeroelastic Simulation of Wind Turbines
,” Ph.D. thesis,
Technische Universität Berlin
,
Berlin, Germany
.
6.
Jonkman
,
J.
,
Wright
,
A.
,
Barter
,
G.
,
Hall
,
M.
,
Allison
,
J. T.
, and
Herber
,
D. R.
,
2021
, “
Functional Requirements for the WEIS Toolset to Enable Controls Co-Design of Floating Offshore Wind Turbines
,” ASME International Offshore Wind Technical Conference, Virtual, Online, Feb. 16–17, p.
V001T01A007
, Paper No. IOWTC2021-3533.
7.
Lemmer
,
F.
,
Yu
,
W.
,
Luhmann
,
B.
,
Schlipf
,
D.
, and
Cheng
,
P. W..
,
2020
, “
Multibody Modeling for Concept-Level Floating Offshore Wind Turbine Design
,”
Multibody Syst. Dyn.
,
49
(
2
), pp.
203
236
.
8.
Al-Solihat
,
M. K.
, and
Nahon
,
M..
,
2018
, “
Flexible Multibody Dynamic Modeling of a Floating Wind Turbine
,”
Int. J. Mech. Sci.
,
142–143
, pp.
518
529
.
9.
Sundarrajan
,
A. K.
,
Lee
,
Y. H.
,
Allison
,
J. T.
,
Zalkind
,
D. S.
, and
Herber
,
D. R.
,
2024
, “
Open-Loop Control Co-Design of Semisubmersible Floating Offshore Wind Turbines Using Linear Parameter-Varying Models
,”
ASME J. Mech. Des.
,
146
(
4
), p.
041704
.
10.
Lee
,
Y. H.
,
Bayat
,
S.
, and
Allison
,
J. T.
,
2022
, “
Control Co-Design Using a Nonlinear Wind Turbine Dynamic Model Based on OpenFAST Linearization
,” Applied Energy Symposium: MIT A+B, Cambridge, MA, July 5–8.
11.
Bayat
,
S.
,
Lee
,
Y. H.
, and
Allison
,
J. T.
,
2023
, “Nested Control Co-Design of a Spar Buoy Horizontal-Axis Floating Offshore Wind Turbine.” https://arxiv.org/abs/2310.15463.
12.
Gao
,
J.
,
Griffith
,
D. T.
,
Sakib
,
M. S.
, and
Boo
,
S. Y..
,
2022
, “
A Semi-Coupled Aero-Servo-Hydro Numerical Model for Floating Vertical Axis Wind Turbines Operating on TLPs
,”
Renewable Energy
,
181
, pp.
692
713
.
13.
Fowler
,
M. J.
,
Owens
,
B.
,
Bull
,
D.
,
Goupee
,
A. J.
,
Hurtado
,
J.
,
Griffith
,
D. T.
, and
Alves
,
M.
,
2014
, “
Hydrodynamic Module Coupling in the Offshore Wind Energy Simulation (OWENS) Toolkit
,” International Conference on Offshore Mechanics and Arctic Engineering, San Francisco, CA, June 8–13, p.
V09BT09A027
, Paper No. OMAE2014-24175.
14.
Sakib
,
M. S.
,
Griffith
,
D. T.
,
Hossain
,
S.
,
Bayat
,
S.
, and
Allison
,
J. T.
,
2024
, “
Intracycle RPM Control for Vertical Axis Wind Turbines
,”
Wind Energy
,
27
(
3
), pp.
202
224
.
15.
Lao
,
Y.
,
Rotea
,
M. A.
,
Koeln
,
J. P.
,
Sakib
,
M. S.
, and
Griffith
,
D. T.
,
2022
, “
Economic Nonlinear Model Predictive Control of Offshore Vertical-Axis Wind Turbines
,” American Control Conference, Atlanta, GA, June 8–10, pp.
3518
3525
.
16.
Le Fouest
,
S.
, and
Mulleners
,
K.
,
2024
, “
Optimal Blade Pitch Control For Enhanced Vertical-Axis Wind Turbine Performance
,”
Nat. Commun.
,
15
(
2770
), pp.
1
13
.
17.
Bouzaher
,
M. T.
, and
Hadid
,
M.
,
2015
, “
Active Control of the Vertical Axis Wind Turbine by the Association of Flapping Wings to Their Blades
,”
Procedia Comput. Sci.
,
52
, pp.
714
722
.
18.
Ahsan
,
F.
,
Griffith
,
D. T.
, and
Gao
,
J.
,
2022
, “
Modal Dynamics And Flutter Analysis Of Floating Offshore Vertical Axis Wind Turbines
,”
Renewable Energy
,
185
, pp.
1284
1300
.
19.
Gao
,
J.
,
Griffith
,
D. T.
,
Jafari
,
M.
,
Yao
,
S.
, and
Ahsan
,
F.
,
2022
, “
Impact of Rotor Solidity on the Design Optimization of Floating Vertical Axis Wind Turbines
,” International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 5–10, p.
V008T09A019
, Paper No. OMAE2022-78715.
20.
Buchner
,
A.-J.
,
Soria
,
J.
,
Honnery
,
D.
, and
Smits
,
A. J.
,
2018
, “
Dynamic Stall in Vertical Axis Wind Turbines: Scaling and Topological Considerations
,”
J. Fluid Mech.
,
841
, pp.
746
766
.
21.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation II: Challenges in HAWT and the Opportunity of Multi-Megawatt Darrieus VAWT Development
,”
Renewable Energy
,
75
, pp.
560
571
.
22.
Lee
,
Y. H.
,
Boo
,
S. Y.
, and
Allison
,
J. T.
,
2021
, “
A Framework for Integrating Hydrostatics, Hydrodynamics, and Rigid-Body Dynamics for the Control Co-Design of Floating Offshore Vertical-Axis Wind Turbine Systems
,” Wind Energy Science Conference, Vol.
1345
. Hannover, Germany, May 25–28.
23.
Lambe
,
A. B.
, and
Martins
,
J. R. R. A.
,
2012
, “
Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes
,”
Struct. Multidiscipl. Optim.
,
46
(
2
), pp.
273
284
.
24.
Powell
,
M. J. D.
,
1994
, “A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation,”
Advances in Optimization and Numerical Analysis
,
S.
Gomez
,
J. P.
Hennart
, eds.,
Springer
,
Dordrecht, The Netherlands
. pp.
51
67
.
25.
Newman
,
J. N.
,
1994
, “
Wave Effects on Deformable Bodies
,”
Appl. Ocean Res.
,
16
(
1
), pp.
47
59
26.
Al-Solihat
,
M. K.
, and
Nahon
,
M.
,
2016
, “
Stiffness of Slack and Taut Moorings
,”
Ships Offshore Struct.
,
11
(
8
), pp.
890
904
.
27.
“Wind Energy Generation Systems - Part 3–2: Design Requirements for Floating Offshore Wind Turbines.” Technical Report No. IEC TS 61400-3-2. International Electrotechnical Commission. 2019. https://webstore.iec.ch/publication/29244.
28.
Murray
,
J.
, and
Barone
,
M.
,
2011
, “
The Development of CACTUS, a Wind and Marine Turbine Performance Simulation Code
,” AIAA Aerospace Sciences Meeting, Reston, VA, Jan 4–7, pp.
1
21
, Paper No. AIAA 2011-147.
29.
Garg
,
D.
,
Patterson
,
M. A.
,
Francolin
,
C.
,
Darby
,
C. L.
,
Huntington
,
G. T.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2011
, “
Direct Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-Horizon Optimal Control Problems Using a Radau Pseudospectral Method
,”
Comput. Optim. Appl.
,
49
(
2
), pp.
335
358
.
30.
Falck
,
R.
,
Gray
,
J. S.
,
Ponnapalli
,
K.
, and
Wright
,
T.
,
2021
, “
Dymos: A Python Package for Optimal Control of Multidisciplinary Systems
,”
J. Open Sourc. Softw.
,
6
(
59
), p.
2809
.
31.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Programm.
,
106
(
1
), pp.
25
57
.
You do not currently have access to this content.