Abstract

The digital twin, a concept that aims to establish a real-time mapping between physical space and virtual space, can be used for real-time analysis, reliability assessment, predictive maintenance, and design optimization of products. This article presents an enabling technology named shape–performance integrated digital twin (SPI-DT) and takes a boom crane as an example to illustrate how to design the SPI-DT step by step for the structural analysis of complex heavy equipment. The SPI-DT contains different types of models, such as an analytical model, a numerical model, and an artificial intelligence (AI) model. In addition, it leverages multisource dynamic data obtained by placing different sensors at multiple measurement positions. In the SPI-DT, the AI model plays a central role, invoking the numerical model and sensor data as the input to predict the structural performance of key components of heavy equipment, while the analytical model analyzes the structure of noncritical components with sensor data as input. This significantly improves the computational efficiency of the digital twin used for the structural analysis of complex heavy equipment, making the digital twin computationally affordable, and thus can be used for the safety assessment and damage protection of the equipment in the operation, as well as the design optimization of next-generation products. Moreover, to visually demonstrate the models and data in the SPI-DT, a three-dimensional application used to display and record the shape and performance information in real time during the operation of the boom crane is developed.

References

1.
Chandrasegaran
,
S. K.
,
Ramani
,
K.
,
Sriram
,
R. D.
,
Horváth
,
I.
,
Bernard
,
A.
,
Harik
,
R. F.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
CAD Comput. Aided Des.
,
45
(
2
), pp.
204
228
. 10.1016/j.cad.2012.08.006
2.
Grieves
,
M.
,
2014
, “
Digital Twin : Manufacturing Excellence Through Virtual Factory Replication
,”
White Pap.
,
1
, pp.
1
7
.
3.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
,
Transdiscipl. Perspect. Complex Syst.
, 1,
Springer International Publishing
,
Cham, Switzerland
, pp.
85
113
.
4.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
. 10.1155/2011/154798
5.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 20th AIAA/ASME/AHS Adaptive Structure Conference, 14th AIAA
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
14
.
6.
Seshadri
,
B. R.
, and
Krishnamurthy
,
T.
,
2017
, “
Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept
,”
25th AIAA/AHS Adaptive Structures Conference 2017
,
Gravaine, the United States
,
Jan. 9–13
, pp.
1
13
.
7.
Fang
,
Y.
,
Cho
,
Y. K.
, and
Chen
,
J.
,
2016
, “
A Framework for Real-Time Pro-Active Safety Assistance for Mobile Crane Lifting Operations
,”
Autom. Constr.
,
72
, pp.
367
379
. 10.1016/j.autcon.2016.08.025
8.
Chen
,
J.
,
Fang
,
Y.
, and
Cho
,
Y. K.
,
2017
, “
Real-Time 3D Crane Workspace Update Using a Hybrid Visualization Approach
,”
J. Comput. Civ. Eng.
,
31
(
5
), pp.
1
15
. 10.1061/(ASCE)CP.1943-5487.0000698
9.
Kan
,
C.
,
Fang
,
Y.
,
Anumba
,
C. J.
, and
Messner
,
J. I.
,
2018
, “
A Cyber-Physical System (CPS) for Planning and Monitoring Mobile Cranes on Construction Sites
,”
Proc. Inst. Civ. Eng. Manag. Procure. Law
,
171
(
6
), pp.
240
250
. 10.1680/jmapl.17.00042
10.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
. 10.1016/j.cirp.2018.04.055
11.
Luo
,
W.
,
Hu
,
T.
,
Ye
,
Y.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2020
, “
A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin
,”
Robot. Comput. Integr. Manuf.
,
65
, pp.
1
16
. 10.1016/j.rcim.2020.101974
12.
Haag
,
S.
, and
Anderl
,
R.
,
2018
, “
Digital Twin—Proof of Concept
,”
Manuf. Lett.
,
15
, pp.
64
66
. 10.1016/j.mfglet.2018.02.006
13.
Zhidchenko
,
V.
,
Malysheva
,
I.
,
Handroos
,
H.
, and
Kovartsev
,
A.
,
2018
, “
Faster Than Real-Time Simulation of Mobile Crane Dynamics Using Digital Twin Concept
,”
J. Phys. Conf. Ser.
,
1096
(
1
), pp.
1
11
. 10.1088/1742-6596/1096/1/012071
14.
Fotland
,
G.
,
Haskins
,
C.
, and
Rølvåg
,
T.
,
2020
, “
Trade Study to Select Best Alternative for Cable and Pulley Simulation for Cranes on Offshore Vessels
,”
Syst. Eng.
,
23
(
2
), pp.
177
188
. 10.1002/sys.21503
15.
Moi
,
T.
,
Cibicik
,
A.
, and
Rølvåg
,
T.
,
2020
, “
Digital Twin Based Condition Monitoring of a Knuckle Boom Crane: An Experimental Study
,”
Eng. Fail. Anal.
,
112
, pp.
1
10
. 10.1016/j.engfailanal.2020.104517
16.
Guivarch
,
D.
,
Mermoz
,
E.
,
Marino
,
Y.
, and
Sartor
,
M.
,
2019
, “
Creation of Helicopter Dynamic Systems Digital Twin Using Multibody Simulations
,”
CIRP Ann.
,
68
(
1
), pp.
133
136
. 10.1016/j.cirp.2019.04.041
17.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
. 10.1109/ACCESS.2020.2970143
18.
Rueden
,
Von
,
L.
,
Mayer
,
S.
, and
Sifa
,
R.
,
2020
, “
Combining Machine Learning and Simulation to a Hybrid Modelling Approach: Current and Future Directions
,”
International Symposium on Intelligent Data Analysis
,
Konstanz, Germany
,
Apr. 27–29
, pp.
548
560
. http://dx.doi.org/10.1007/978-3-030-44584-3-_43
19.
Magargle
,
R.
,
Johnson
,
L.
,
Mandloi
,
P.
,
Davoudabadi
,
P.
,
Kesarkar
,
O.
,
Krishnaswamy
,
S.
,
Batteh
,
J.
, and
Pitchaikani
,
A.
,
2017
, “
A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an Automotive Braking System
,”
Proceeding of 12th International Model for Conference
,
Prague, Czech Republic
,
May 15–17
, pp.
35
46
.
20.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
. 10.1080/00207543.2018.1552032
21.
Zohdi
,
T. I.
,
2020
, “
A Machine-Learning Framework for Rapid Adaptive Digital-Twin Based Fire-Propagation Simulation in Complex Environments
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112907
. 10.1016/j.cma.2020.112907
22.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
. 10.2514/1.J055201
23.
Verma
,
A. K.
,
Nagpal
,
S.
,
Desai
,
A.
, and
Sudha
,
R.
,
2020
, “
An Efficient Neural-Network Model for Real-Time Fault Detection in Industrial Machine
,”
Neural Comput. Appl.
, pp.
1
14
. 10.1007/s00521-020-05033-z
24.
Quan
,
H.
,
Srinivasan
,
D.
, and
Khosravi
,
A.
,
2014
, “
Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals
,”
IEEE Trans. Neural Networks Learn. Syst.
,
25
(
2
), pp.
303
315
. 10.1109/TNNLS.2013.2276053
25.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
26.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design via Surrogate Modelling A Practical Guide
,
John Wiley & Sons Ltd
,
Hoboken, NJ
.
27.
Brahim-Belhouari
,
S.
, and
Vesin
,
J. M.
,
2001
, “
Bayesian Learning Using Gaussian Process for Time Series Prediction
,”
Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563)
,
Orchid Country Club, Singapore
,
Aug. 6–8
, pp.
433
436
. http://dx.doi.org/10/1109/SSP.2001.955315
28.
Girard
,
A.
,
Rasmussen
,
C. E.
,
Candela
,
J. Q.
, and
Murray-Smith
,
R.
,
2003
, “
Gaussian Process Priors With Uncertain Inputs Application to Multiple-Step Ahead Time Series Forecasting
,”
Adv. Neural Inf. Process. Syst.
, pp.
529
536
.
29.
Brahim-Belhouari
,
S.
, and
Bermak
,
A.
,
2004
, “
Gaussian Process for Nonstationary Time Series Prediction
,”
Comput. Stat. Data Anal.
,
47
(
4
), pp.
705
712
. 10.1016/j.csda.2004.02.006
30.
Girard
,
A.
, and
Murray-Smith
,
R.
,
2005
, “
Gaussian Processes: Prediction at a Noisy Input and Application to Iterative Multiple-Step Ahead Forecasting of Time-Series
,”
Lect. Notes Comput. Sci.
,
3355
, pp.
158
184
. 10.1007/978-3-540-30560-6_7
31.
Hachino
,
T.
, and
Kadirkamanathan
,
V.
,
2011
, “
Multiple Gaussian Process Models for Direct Time Series Forecasting
,”
IEEJ Trans. Electr. Electron. Eng.
,
6
(
3
), pp.
245
252
. 10.1002/tee.20651
32.
Roberts
,
S.
,
Osborne
,
M.
,
Ebden
,
M.
,
Reece
,
S.
,
Gibson
,
N.
, and
Aigrain
,
S.
,
2013
, “
Gaussian Processes for Time-Series Modelling
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
371
(
1984
), pp.
1
25
. 10.1098/rsta.2011.0550
33.
Wang
,
J. M.
,
Fleet
,
D. J.
, and
Hertzmann
,
A.
,
2005
, “
Gaussian Process Dynamical Models
,”
Adv. Neural Inf. Process. Syst.
,
18
, pp.
1441
1448
.
34.
Neitzel
,
R. L.
,
Seixas
,
N. S.
, and
Ren
,
K. K.
,
2001
, “
A Review of Crane Safety in the Construction Industry
,”
Appl. Occup. Environ. Hyg.
,
16
(
12
), pp.
1106
1117
. 10.1080/10473220127411
35.
Voytenko
,
M.
,
2020
, “
New Heavy-Lift Floating Crane Collapsed in Rostock VIDEO
,”
Fleetmon
, https://www.fleetmon.com/maritime-news/2020/29565/new-heavy-lift-floating-crane-collapse,
Accessed November 6, 2020
.
36.
Lugrís
,
U.
,
Escalona
,
J. L.
,
Dopico
,
D.
, and
Cuadrado
,
J.
,
2011
, “
Efficient and Accurate Simulation of the Rope-Sheave Interaction in Weight-Lifting Machines
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
225
(
4
), pp.
331
343
. 10.1177/1464419311403224
37.
Bulín
,
R.
,
Haǰ
,
M.
, and
Polach
,
P.
,
2017
, “
Nonlinear Dynamics of a Cable—Pulley System Using the Absolute Nodal Coordinate Formulation
,”
Mech. Res. Commun.
,
82
, pp.
21
28
. 10.1016/j.mechrescom.2017.01.001
38.
Farmaga
,
I.
,
Shmigelskyi
,
P.
,
Spiewak
,
P.
, and
Ciupinski
,
L.
,
2011
, “
Evaluation of Computational Complexity of Finite Element Analysis
,”
2011 11th International Conference—Experience of Designing and Application of Cad Systems in Microelectronics CADSM 2011
,
ZakarpattyaPolyana-Svalyava, Ukraine
,
Feb. 23–25
, pp.
213
214
.
39.
Nguyen
,
D. T.
,
Filippone
,
M.
, and
Michiardi
,
P.
,
2019
, “
Exact Gaussian Process Regression With Distributed Computations
,”
Proc. ACM Symp. Appl. Comput.
,
1477
, pp.
1286
1295
. 10.1145/3297280.3297409
You do not currently have access to this content.