Abstract

To systematically investigate the contact constraint relationships and the influences of fit clearances on the kinematic performances of a double roller tripod joint (DRTJ), a method for the kinematic analysis of DRTJs is proposed based on the principle of conjugate surfaces. In the proposed method, the constraint relations between rollers and tracks as well as between rollers and trunnions are first derived based on the principle of conjugate surfaces. Then, according to the constructed constraint relationships, the kinematic analysis model of a DRTJ considering the influences of fit clearances is established. Next, the effectiveness of the proposed method is validated by measuring the relative displacements and angles between rollers and tracks via experiment. Finally, kinematic analyses are carried out and the main results show that the relative pitch angle between rollers and tracks are always kept as zeroes under any working condition by designing the shapes of rollers’ outer surfaces to be semi-toroid. The fit clearances have little influence on the kinematic performances of the DRTJ, thus proper fit clearances between rollers and tracks as well as between rollers and trunnions can be designed to improve the lubricating conditions of the DRTJ.

References

1.
Lee
,
C. H.
, and
Polycarpou
,
A. A.
,
2010
, “
A Phenomenological Friction Model of Tripod Constant Velocity (CV) Joints
,”
Tribol. Int.
,
43
(
4
), pp.
844
858
.
2.
Chang
,
D.
, and
Li
,
S.
,
2015
, “
Kinematic Analysis of the Trigeminal Sliding Universal Joint Mechanism Installed Twin Radial Bearings
,”
J. Mech. Eng.
,
51
(
13
), pp.
218
226
(in Chinese).
3.
Durum
,
M. M.
,
1975
, “
Kinematic Properties of Tripode (Tri-Pot) Joints
,”
ASME J. Eng. Ind.
,
97
(
2
), p.
708
.
4.
Akbil
,
E.
, and
Lee
,
T. W.
,
1984
, “
On the Motion Characteristics of Tripode Joints. Part 1: General Case
,”
ASME J. Mech. Trans. Autom. Des.
,
106
(
2
), pp.
228
234
.
5.
Lee
,
T. W.
, and
Akbil
,
E.
,
1984
, “
On the Motion Characteristics of Tripode Joints. Part 2: Applications
,”
ASME J. Mech. Trans. Autom. Des.
,
106
(
2
), pp.
235
241
.
6.
Urbinati
,
F.
, and
Pennestrì
,
E.
,
1998
, “
Kinematic and Dynamic Analyses of the Tripode Joint
,”
Multibody Syst. Dyn.
,
2
(
4
), pp.
355
367
.
7.
Mariot
,
J. P.
, and
K'Nevez
,
J. Y.
,
1999
, “
Kinematics of Tripode Transmissions. A New Approach
,”
Multibody Syst. Dyn.
,
3
(
1
), pp.
85
105
.
8.
K'nevez
,
J.-Y.
,
Mariot
,
J.-P.
,
Moreau
,
L.
, and
Diaby
,
M. P.
,
2001
, “
Kinematics of Transmissions Consisting of an Outboard Ball Joint and an Inboard Generalized Tripod Joint
,”
Proc. Inst. Mech. Eng., K: J. Multibody Dyn.
,
215
(
3
), pp.
119
132
.
9.
Mariot
,
J. P.
, and
K'Nevez
,
J. Y.
,
2002
, “
Dynamics of an Automotive Transmission Consisting of a Tripod Joint and a Ball Joint: A Symbolic Approach
,”
Proc. Inst. Mech. Eng., K: J. Multibody Dyn.
,
216
(
3
), pp.
203
211
.
10.
Mariot
,
J. P.
,
K'Nevez
,
J. Y.
, and
Barbedette
,
B.
,
2004
, “
Tripod and Ball Joint Automotive Transmission Kinetostatic Model Including Friction
,”
Multibody Syst. Dyn.
,
11
(
2
), pp.
127
145
.
11.
Serveto
,
S.
,
Mariot
,
J. P.
, and
Diaby
,
M.
,
2008
, “
Modelling and Measuring the Axial Force Generated by Tripod Joint of Automotive Drive-Shaft
,”
Multibody Syst. Dyn.
,
19
(
3
), pp.
209
226
.
12.
Wang
,
X.
,
Chang
,
D.
, and
Wang
,
J.
,
2009
, “
Kinematic Model of Tripod Sliding Universal Joints
,”
Trans. Chin. Soc. Agric. Mach.
,
40
(
9
), pp.
7
11
(in Chinese).
13.
Wang
,
X.
,
Chang
,
D.
, and
Wang
,
J.
,
2009
, “
Kinematic Investigation of Tripod Sliding Universal Joints Based on Coordinate Transformation
,”
Multibody Syst. Dyn.
,
22
(
1
), pp.
97
113
.
14.
Wang
,
X.
,
Hu
,
R.
,
Wang
,
M.
, and
Cui
,
H.
,
2013
, “
Numerical Analysis on Dynamic Properties of Tripod Sliding Universal Joints
,”
Proc. Inst. Mech. Eng., K: J. Multibody Dyn.
,
227
(
2
), pp.
172
184
.
15.
Jo
,
G. H.
,
Kim
,
S. H.
,
Kim
,
D. W.
, and
Chu
,
C. N.
,
2018
, “
Estimation of Generated Axial Force Considering Rolling-Sliding Friction in Tripod Type Constant Velocity Joint
,”
Tribol. Trans.
,
61
(
5
), pp.
889
900
.
16.
Kim
,
D. W.
,
Kim
,
S. H.
,
Chu
,
C. N.
, and
Cho
,
J. H.
,
2019
, “
A New Life Model of Tripod Type Constant Velocity Joint Using Accelerated Life Test
,”
Tribol. Int.
,
132
, pp.
130
141
.
17.
Kim
,
S. H.
,
Kim
,
D. W.
, and
Chu
,
C. N.
,
2019
, “
A Real Time Wear Measurement System for Tripod Type Constant Velocity Joints
,”
Precis. Eng.
,
56
, pp.
549
558
.
18.
Lee
,
C. H.
, and
Polycarpou
,
A. A.
, “
Experimental Investigation of Tripod Constant Velocity (CV) Joint Friction
,”
SAE Technical Paper 2006-01-0582
.
19.
Ripard
,
V.
,
Ville
,
F.
,
Cavoret
,
J.
,
Ruzek
,
M.
,
Charles
,
P.
, and
Diaby
,
M.
, “
Experimental Investigation of Sliding on Tripod Constant Velocity Joints
,”
SAE Technical Paper 2019-01-5017
.
20.
Qiu
,
Y.
,
Shangguan
,
W. B.
, and
Luo
,
Y.
,
2020
, “
Kinematic Analysis of the Double Roller Tripod Joint
,”
Proc. Inst. Mech. Eng., K: J. Multibody Dyn.
,
234
(
1
), pp.
147
160
.
21.
Seherr-Thoss
,
H. C.
,
Schmelz
,
F.
, and
Aucktor
,
E.
,
2006
,
Universal Joints and Driveshafts
,
Springer
,
Berlin, Heidelberg
.
22.
Tone
,
H.
,
Goto
,
T.
,
Kondo
,
H.
, and
Kura
,
H.
,
2003
,
Constant Velocity Universal Joint,”
Patent No. 6,602,142
.
23.
Sams
,
R.
,
Hopson
,
M. W.
,
Schmitt
,
H.
,
Keller
,
R. F.
,
Doner
,
B. W.
, and
Haertel
,
A.
,
2004
, “
Anti-Shudder Tripod Type CV Universal Joint
,”
Patent No. 6,699,134
.
24.
Watanabe
,
K.
,
Kawakatsu
,
T.
, and According to the derivation
Nakao
,
S.
,
2005
, “
Kinematic and Static Analyses of Tripod Constant Velocity Joints of Spherical End Spider Type
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
229
230
.
25.
Lim
,
Y. H.
,
Song
,
M. E.
,
Lee
,
W. H.
,
Cho
,
H. J.
, and
Bae
,
D. S.
,
2009
, “
Multibody Dynamics Analysis of the Driveshaft Coupling of the Ball and Tripod Types of Constant Velocity Joints
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
145
162
.
26.
Qiu
,
Y.
, and
Shangguan
,
W. B.
, “
Kinematic Analysis and Simulation of the Double Roller Tripod Joint
,”
SAE Technical Paper 2019-01-1526
.
27.
Chen
,
C. H.
,
1995
, “
A Formula for Determining Limit Noninterference Curvature in Pure Rolling Conjugation Gears by Using Geometro-Kinematical Concepts
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
180
184
.
28.
Chen
,
C. K.
,
Chiou
,
S. T.
,
Fong
,
Z. H.
,
Lee
,
C. K.
, and
Chen
,
C. H.
,
2001
, “
Mathematical Model of Curvature Analysis for Conjugate Surfaces With Generalized Motion in Three Dimensions
,”
Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci.
,
215
(
4
), pp.
487
502
.
29.
Gonzalez-Perez
,
I.
, and
Fuentes-Aznar
,
A.
,
2019
, “
Conjugated Action and Methods for Crowning in Face-Hobbed Spiral Bevel and Hypoid Gear Drives Through the Spirac System
,”
Mech. Mach. Theory
,
139
, pp.
109
130
.
30.
Chen
,
N.
,
1998
, “
Curvatures and Sliding Ratios of Conjugate Surfaces
,”
AMSE J. Mech. Des.
,
120
(
1
), pp.
126
132
.
31.
Chen
,
C. H.
,
2006
, “
Geometrical Way for Describing Body Motion and Equations of Relationships Between Geometrical and Kinematical Parameters
,”
Mech. Mach. Theory
,
41
(
3
), pp.
283
306
.
32.
Shi
,
B.
,
2001
, “
Principle and Analysis of the Conjugate Surfaces of the Rzeppa Universal Joints
,”
Bearing
,
2
, pp.
5
10
(in Chinese).
33.
ISO
,
2010
, “
Geometrical Product Specifications (GPS)—ISO Code System for Tolerances on Linear Sizes
,”
ISO 286-1: 2010
.
34.
ISO
,
2010
, “
Geometrical Product Specifications (GPS)—ISO Code System for Tolerances on Linear Sizes
,”
ISO 286-2: 2010
.
35.
Liu
,
G.
,
Yang
,
J.
,
Yang
,
X.
,
Gao
,
F.
, and
Ma
,
X.
,
2018
, “
Influence of Radial Clearance on Contact Characteristics of Cross Shaft Universal Joint Bearings
,”
Bearing
,
11
, pp.
38
42
.
(in Chinese)
.
36.
Flores
,
P.
,
2015
, “Euler Angles, Bryant Angles and Euler Parameters,”
Concepts and Formulations for Spatial Multibody Dynamics
,
Springer
,
Cham
, pp.
15
22
.
You do not currently have access to this content.