Graphical Abstract Figure

Preparation Process and Characterization of Slag-Based Alkali-Activated Materials

Graphical Abstract Figure

Preparation Process and Characterization of Slag-Based Alkali-Activated Materials

Close modal

Abstract

The aim of the present work is to carry out a technical study on blast furnace slag-based alkali-activated binders, using the design of experiments methodology. A four-factor, mixed-level (two and three) full factorial design was employed to evaluate and model the significance and interactions of four independent factors on the compressive strength: curing environment, activator type (alkali silicate (AS) and alkali hydroxide (AH)), activator content, and curing time. The experimental compressive strength data were adequately fitted by empirical models with determination coefficients (R2) of 0.89 and 0.93 for AS and AH activators, respectively. The most significant effects of factors on the compressive strength are classed according to this order: curing time > activator-to-precursor mass ratio > curing temperature for the AS case and curing temperature > activating solution concentration > curing time for the AH case. The most favorable situation corresponding to maximum compressive strength is obtained with a minimum curing temperature of 20 °C, an activator-to-precursor mass ratio of 0.42, and a maximum curing duration of 28 days, for a desirability value of 0.95, in the case of the AS activator. When using the AH activator: a desirability function-based optimization targeting a compressive strength above 50 MPa showed that this could be achieved beyond 16 days of curing, with a minimum concentration of the alkaline solution worth 5 M (considering its corrosive nature), and a medium temperature representative of North African countries (≈30 °C), for a desirability value of 0.35.

References

1.
Prabu
,
B.
,
Kumutha
,
R.
, and
Vijai
,
K.
,
2017
, “
Effect of Fibers on the Mechanical Properties of Fly Ash and GGBS Based Geopolymer Concrete Under Different Curing Conditions
,”
Indian J. Eng. Mater. Sci.
,
24
(
1
), pp.
5
12
.
2.
Lehne
,
J.
, and
Preston
,
F.
,
2018
, “
Making Concrete Change
,” Innovation in Low-Carbon Cement and Concrete, Chatham House Report.
3.
Hojati
,
M.
, and
Radlińska
,
A.
,
2017
, “
Shrinkage and Strength Development of Alkali-Activated Fly Ash-Slag Binary Cements
,”
Constr. Build. Mater.
,
150
, pp.
808
816
.
4.
Purdon
,
A. O.
,
1940
, “
The Action of Alkalis on Blast-Furnace Slag
,”
J. Soc. Chem. Ind. London
,
59
(
9
), pp.
191
202
.
5.
Glukhovskii
,
V. D.
,
Pashkov
,
I. A.
,
Starchevskaya
,
E. A.
, and
Rostovskaya
,
G. S.
,
1967
, “
Soil-Silicate Concrete for Hydraulic and Irrigation Structures
,”
Hydrotech. Constr.
,
1
(
2
), pp.
120
124
.
6.
Davidovits
,
J.
,
1991
, “
Geopolymers: Inorganic Polymeric New Materials
,”
J. Therm. Anal. Calorim.
,
37
(
8
), pp.
1633
1656
.
7.
Gebregziabiher
,
B. S.
,
Thomas
,
R. J.
, and
Peethamparan
,
S.
,
2016
, “
Temperature and Activator Effect on Early-Age Reaction Kinetics of Alkali-Activated Slag Binders
,”
Constr. Build. Mater.
,
113
, pp.
783
793
.
8.
Provis
,
J. L.
, and
Bernal
,
S. A.
,
2014
, “
Geopolymers and Related Alkali-Activated Materials
,”
Annu. Rev. Mater. Res.
,
44
(
1
), pp.
299
327
.
9.
Djobo
,
J. N. Y.
,
Elimbi
,
A.
,
Tchakouté
,
H. K.
, and
Kumar
,
S.
,
2016
, “
Mechanical Properties and Durability of Volcanic Ash Based Geopolymer Mortars
,”
Constr. Build. Mater.
,
124
, pp.
606
614
.
10.
Pilehvar
,
S.
,
Szczotok
,
A. M.
,
Rodríguez
,
J. F.
,
Valentini
,
L.
,
Lanzón
,
M.
,
Pamies
,
R.
, and
Kjøniksen
,
A. L.
,
2019
, “
Effect of Freeze-Thaw Cycles on the Mechanical Behavior of Geopolymer Concrete and Portland Cement Concrete Containing Micro-Encapsulated Phase Change Materials
,”
Constr. Build. Mater.
,
200
, pp.
94
103
.
11.
Aydın
,
S.
, and
Baradan
,
B.
,
2012
, “
Mechanical and Microstructural Properties of Heat Cured Alkali-Activated Slag Mortars
,”
Mater. Des.
,
35
, pp.
374
383
.
12.
Reddy
,
M. S.
,
Dinakar
,
P.
, and
Rao
,
B. H.
,
2018
, “
Mix Design Development of Fly Ash and Ground Granulated Blast Furnace Slag Based Geopolymer Concrete
,”
J. Build. Eng.
,
20
, pp.
712
722
.
13.
Sivakumar
,
A.
, and
Srinivasan
,
K.
,
2014
, “
High Performance Fiber Reinforced Alkali Activated Slag Concrete
,”
Int. J. Civil Environ. Eng.
,
8
(
12
), pp.
1288
1291
.
14.
Bakharev
,
T.
,
Sanjayan
,
J. G.
, and
Cheng
,
Y. B.
,
2003
, “
Resistance of Alkali-Activated Slag Concrete to Acid Attack
,”
Cem. Concr. Res.
,
33
(
10
), pp.
1607
1611
.
15.
Bernal
,
S.
,
De Gutierrez
,
R.
,
Delvasto
,
S.
, and
Rodriguez
,
E.
,
2010
, “
Performance of an Alkali-Activated Slag Concrete Reinforced With Steel Fibers
,”
Constr. Build. Mater.
,
24
(
2
), pp.
208
214
.
16.
Yunsheng
,
Z.
,
Wei
,
S.
,
Qianli
,
C.
, and
Lin
,
C.
,
2007
, “
Synthesis and Heavy Metal Immobilization Behaviors of Slag Based Geopolymer
,”
J. Hazard. Mater.
,
143
(
1–2
), pp.
206
213
.
17.
Karam
,
R.
,
Paris
,
M.
,
Deneele
,
D.
,
Wattez
,
T.
,
Cyr
,
M.
, and
Bulteel
,
D.
,
2021
, “
Effect of Sediment Incorporation on the Reactivity of Alkali-Activated GGBFS Systems
,”
Mater. Struct.
,
54
(
3
), p.
118
.
18.
Marvila
,
M. T.
,
de Azevedo
,
A. R. G.
,
de Oliveira
,
L. B.
,
de Castro Xavier
,
G.
, and
Vieira
,
C. M. F.
,
2021
, “
Mechanical, Physical and Durability Properties of Activated Alkali Cement Based on Blast Furnace Slag as a Function of%Na2O
,”
Case Stud. Constr. Mater.
,
15
, p.
e00723
.
19.
Guo
,
W.
,
Zhao
,
Q.
,
Sun
,
Y.
,
Xue
,
C.
,
Bai
,
Y.
, and
Shi
,
Y.
,
2022
, “
Effects of Various Curing Methods on the Compressive Strength and Microstructure of Blast Furnace Slag-Fly Ash-Based Cementitious Material Activated by Alkaline Solid Wastes
,”
Constr. Build. Mater.
,
357
, p.
129397
.
20.
Provis
,
J. L.
, and
Van Deventer
,
J. S.
,
2013
,
Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM
, Vol.
13
,
Springer Science & Business Media
,
Heidelberg, Germany
.
21.
Jafari
,
A.
, and
Toufigh
,
V.
,
2023
, “
Developing a Comprehensive Prediction Model for the Compressive Strength of Slag-Based Alkali-Activated Concrete
,”
J. Sustainable Cem.-Based Mater.
, 13(
1
), pp.
1
18
.
22.
Li
,
Y.
,
Shen
,
J.
,
Lin
,
H.
, and
Li
,
Y.
,
2023
, “
Optimization Design for Alkali-Activated Slag-Fly Ash Geopolymer Concrete Based on Artificial Intelligence Considering Compressive Strength, Cost, and Carbon Emission
,”
J. Build. Eng.
,
75
, p.
106929
.
23.
Shah
,
S. F. A.
,
Chen
,
B.
,
Zahid
,
M.
, and
Ahmad
,
M. R.
,
2022
, “
Compressive Strength Prediction of One-Part Alkali Activated Material Enabled by Interpretable Machine Learning
,”
Constr. Build. Mater.
,
360
, p.
129534
.
24.
Kurt
,
Z.
,
Yilmaz
,
Y.
,
Cakmak
,
T.
, and
Ustabaş
,
I.
,
2023
, “
A Novel Framework for Strength Prediction of Geopolymer Mortar: Renovative Precursor Effect
,”
J. Build. Eng.
,
76
, p.
107041
.
25.
Arifeen
,
S. U.
,
Amin
,
M. N.
,
Ahmad
,
W.
,
Althoey
,
F.
,
Ali
,
M.
,
Alotaibi
,
B. S.
, and
Abuhussain
,
M. A.
,
2023
, “
A Comparative Study of Prediction Models for Alkali-Activated Materials to Promote Quick and Economical Adaptability in the Building Sector
,”
Constr. Build. Mater.
,
407
, p.
133485
.
26.
Gao
,
Y.
,
Xu
,
J.
,
Luo
,
X.
,
Zhu
,
J.
, and
Nie
,
L.
,
2016
, “
Experiment Research on Mix Design and Early Mechanical Performance of Alkali-Activated Slag Using Response Surface Methodology (RSM)
,”
Ceram. Int.
,
42
(
10
), pp.
11666
11673
.
27.
Kumar
,
S.
,
Gupta
,
P. K.
, and
Iqbal
,
M. A.
,
2023
, “
An Experimental Study on the Development of Self-Compacting, Alkali-Activated Slag Concrete Mixes Using Industrial By-Products Under Ambient Curing
,”
Mater. Today: Proc.
, Available Online 3 May.
28.
Manojsuburam
,
R.
,
Sakthivel
,
E.
, and
Jayanthimani
,
E.
,
2022
, “
A Study on the Mechanical Properties of Alkali Activated Ground Granulated Blast Furnace Slag and Fly Ash Concrete
,”
Mater. Today: Proc.
,
62
, pp.
1761
1764
.
29.
Bernal
,
S. A.
,
2015
, “
Effect of the Activator Dose on the Compressive Strength and Accelerated Carbonation Resistance of Alkali Silicate-Activated Slag/Metakaolin Blended Materials
,”
Constr. Build. Mater.
,
98
, pp.
217
226
.
30.
Niş
,
A.
,
2019
, “
Compressive Strength Variation of Alkali Activated Fly Ash/Slag Concrete With Different NaOH Concentrations and Sodium Silicate to Sodium Hydroxide Ratios
,”
J. Sustainable Constr. Mater. Technol.
,
4
(
2
), pp.
351
360
.
31.
Sarri
,
A.
,
Oualit
,
M.
, and
Kennouche
,
S.
,
2023
, “
Valorization of a Steel Industrial Co-Product for the Development of Alkali-Activated Materials: Effect of Curing Environments
,”
Adv. Mater. Sci.
,
23
(
2
), pp.
45
63
.
32.
BS EN 196-3: 2016, “Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness.”
33.
BS EN 1015-11: 2019, “Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar.”
34.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons
,
Hoboken, NJ
.
35.
Goupy
,
J.
, and
Creighton
,
L.
,
2007
,
Introduction to Design of Experiments With JMP Examples
,
SAS Publishing
,
Cary, NC
.
36.
Cherfi
,
A.
,
Dehak-oughlissi
,
K.
,
Bali
,
S. A.
, and
Meddour
,
T. B.
,
2023
, “
Technical-Economic Study of PVC-Based Formulations Intended to Industrial 3-Wire Electric Cables, Using a Full Factorial Design Methodology
,”
J. Elastomers Plast.
,
55
(
3
), pp.
426
454
.
37.
Gijbels
,
K.
,
Pontikes
,
Y.
,
Samyn
,
P.
,
Schreurs
,
S.
, and
Schroeyers
,
W.
,
2020
, “
Effect of NaOH Content on Hydration, Mineralogy, Porosity and Strength in Alkali/Sulfate-Activated Binders From Ground Granulated Blast Furnace Slag and Phosphogypsum
,”
Cem. Concr. Res.
,
132
, p.
106054
.
38.
Fernández-Jiménez
,
A.
,
Palomo
,
J. G.
, and
Puertas
,
F.
,
1999
, “
Alkali-Activated Slag Mortars: Mechanical Strength Behaviour
,”
Cem. Concr. Res.
,
29
(
8
), pp.
1313
1321
.
39.
Chicco
,
D.
,
Warrens
,
M. J.
, and
Jurman
,
G.
,
2021
, “
The Coefficient of Determination R-Squared is More Informative Than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation
,”
PeerJ Comput. Sci.
,
7
, p.
e623
.
40.
Mohajan
,
H. K.
,
2017
, “
Two Criteria for Good Measurements in Research: Validity and Reliability
,”
Ann. Spiru Haret Univ. Econ. Ser.
,
17
(
4
), pp.
59
82
.
41.
Cherfi
,
A.
,
Maache-Rezzoug
,
Z.
, and
Rezzoug
,
S. A.
,
2023
, “
A Full Factorial Design-Based Desirability Function Approach to Investigate the Transport of Ni2+, Co2+, Cr3+ and Zn2+ Through Polymer Inclusion Membranes
,”
Desalin. Water Treat.
,
308
, pp.
51
67
.
You do not currently have access to this content.