Abstract

High entropy alloys (HEAs) are primarily known for their high strength and high thermal stability. These alloys have recently been studied for high strain rate applications as well. HEAs have been observed to exhibit different properties when subjected to different strain rates. Very few published results on HEAs are available for high strain rate loading conditions. In addition, modeling and simulation work of microstructural details, such as grain boundary and precipitates of HEAs have not yet been investigated. However, at an atomistic length scale, molecular dynamics simulation works of HEAs have already been published. In this study, a detailed microstructural analysis of plastic deformation of the material under high strain rate loading has been performed using dislocation density based crystal plasticity finite element modeling. The primary objective is, therefore, to assess the strengthening effects due to precipitates on a particular high entropy alloy Al0.3CoCrFeNi with ultrafine grains having randomly distributed NiAl precipitates.

References

1.
Senkov
,
O. N.
,
Miller
,
J. D.
,
Miracle
,
D. B.
, and
Woodward
,
C.
,
2015
, “
Accelerated Exploration of Multi-Principal Element Alloys With Solid Solution Phases
,”
Nat. Commun.
,
6
(
1
), pp.
1
10
. 10.1038/ncomms7529
2.
Yeh
,
J.-W.
, and
Yeh
,
J. W.
,
2006
, “
Refractory High-Entropy Alloys (RHEAs) View Project High-Entropy Alloys View Project Recent Progress in High-Entropy Alloys
,”
Ann. Chim. Mater.
,
31
, pp.
633
648
. 10.3166/acsm.31.633-648
3.
Miracle
,
D. B.
, and
Senkov
,
O. N.
,
2017
, “
A Critical Review of High Entropy Alloys and Related Concepts
,”
Acta Mater.
,
122
, pp.
448
511
. 10.1016/j.actamat.2016.08.081
4.
Yeh
,
J. W.
,
2002
, “
US Patent—High-Entropy Multielement Alloys
,”
US Pat. App.
,
1
(
19
).
5.
Hsu
,
C.
,
Yeh
,
J.
,
Chen
,
S.
, and
Shun
,
T.
,
2004
, “
Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy With Boron Addition
,”
Metall. Mater. Trans. A
,
35
(
5
), pp.
1465
1469
. 10.1007/s11661-004-0254-x
6.
Wang
,
J.
,
Liu
,
Y.
,
Liu
,
B.
,
Wang
,
Y.
,
Cao
,
Y.
,
Li
,
T.
, and
Zhou
,
R.
,
2017
, “
Flow Behavior and Microstructures of Powder Metallurgical CrFeCoNiMo0.2 High Entropy Alloy During High Temperature Deformation
,”
Mater. Sci. Eng. A
,
689
, pp.
233
242
. 10.1016/j.msea.2017.02.064
7.
Otto
,
F.
,
Dlouhý
,
A.
,
Somsen
,
C.
,
Bei
,
H.
,
Eggeler
,
G.
, and
George
,
E. P.
,
2013
, “
The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy
,”
Acta Mater.
,
61
(
15
), pp.
5743
5755
. 10.1016/j.actamat.2013.06.018
8.
Samal
,
M. K.
,
2017
, “
Development of a Model for Simulation of Micro-Twin and Corresponding Asymmetry in High Temperature Deformation Behavior of Nickel-Based Superalloy Single Crystals Using Crystal Plasticity-Based Framework
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
14
), pp.
2621
2635
. 10.1177/0954406216639073
9.
Li
,
D.
,
Li
,
C.
,
Feng
,
T.
,
Zhang
,
Y.
,
Sha
,
G.
,
Lewandowski
,
J. J.
,
Liaw
,
P. K.
, and
Zhang
,
Y.
,
2017
, “
High-Entropy Al 0.3 CoCrFeNi Alloy Fibers With High Tensile Strength and Ductility at Ambient and Cryogenic Temperatures
,”
Acta Mater.
,
123
, pp.
285
294
. 10.1016/j.actamat.2016.10.038
10.
Wang
,
B.
,
Fu
,
A.
,
Huang
,
X.
,
Liu
,
B.
,
Liu
,
Y.
,
Li
,
Z.
, and
Zan
,
X.
,
2016
, “
Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression
,”
J. Mater. Eng. Perform
,
25
(
7
), pp.
2985
2992
. 10.1007/s11665-016-2105-5
11.
Li
,
Z.
,
Zhao
,
S.
,
Diao
,
H.
,
Liaw
,
P. K.
, and
Meyers
,
M. A.
,
2017
, “
High-Velocity Deformation of Al 0.3 CoCrFeNi High-Entropy Alloy: Remarkable Resistance to Shear Failure
,”
Sci. Rep.
,
7
, pp.
1
8
.
12.
Kumar
,
N.
,
Ying
,
Q.
,
Nie
,
X.
,
Mishra
,
R. S.
,
Tang
,
Z.
,
Liaw
,
P. K.
,
Brennan
,
R. E.
,
Doherty
,
K. J.
, and
Cho
,
K. C.
,
2015
, “
High Strain-Rate Compressive Deformation Behavior of the Al0.1CrFeCoNi High Entropy Alloy
,”
Mater. Des.
,
86
, pp.
598
602
. 10.1016/j.matdes.2015.07.161
13.
Jiao
,
Z. M.
,
Ma
,
S. G.
,
Chu
,
M. Y.
,
Yang
,
H. J.
,
Wang
,
Z. H.
,
Zhang
,
Y.
, and
Qiao
,
J. W.
,
2016
, “
Superior Mechanical Properties of AlCoCrFeNiTix High-Entropy Alloys Upon Dynamic Loading
,”
J. Mater. Eng. Perform
,
25
(
2
), pp.
451
456
. 10.1007/s11665-015-1869-3
14.
Zhang
,
T. W.
,
Jiao
,
Z. M.
,
Wang
,
Z. H.
, and
Qiao
,
J. W.
,
2017
, “
Dynamic Deformation Behaviors and Constitutive Relations of an AlCoCr1.5Fe1.5NiTi0.5 High-Entropy Alloy
,”
Scr. Mater.
,
136
, pp.
15
19
. 10.1016/j.scriptamat.2017.03.039
15.
Ma
,
S. G.
,
Jiao
,
Z. M.
,
Qiao
,
J. W.
,
Yang
,
H. J.
,
Zhang
,
Y.
, and
Wang
,
Z. H.
,
2016
, “
Strain Rate Effects on the Dynamic Mechanical Properties of the AlCrCuFeNi2 High-Entropy Alloy
,”
Mater. Sci. Eng. A
,
649
, pp.
35
38
. 10.1016/j.msea.2015.09.089
16.
Park
,
J. M.
,
Moon
,
J.
,
Bae
,
J. W.
,
Jang
,
M. J.
,
Park
,
J.
,
Lee
,
S.
, and
Kim
,
H. S.
,
2018
, “
Strain Rate Effects of Dynamic Compressive Deformation on Mechanical Properties and Microstructure of CoCrFeMnNi High-Entropy Alloy
,”
Mater. Sci. Eng. A
,
719
, pp.
155
163
. 10.1016/j.msea.2018.02.031
17.
Li
,
C.
,
Xue
,
Y.
,
Hua
,
M.
,
Cao
,
T.
,
Ma
,
L.
, and
Wang
,
L.
,
2016
, “
Microstructure and Mechanical Properties of AlxSi0.2CrFeCoNiCu1-x High-Entropy Alloys
,”
Mater. Des.
,
90
, pp.
601
609
. 10.1016/j.matdes.2015.11.013
18.
Smith
,
C. S.
,
1963
,
Four Outstanding Researchers in Metallurgical History
,
American Society for Testing and Materials
.
19.
Yeh
,
J.-W.
,
Lin
,
S.-J.
,
Chin
,
T.-S.
,
Gan
,
J.-Y.
,
Chen
,
S.-K.
,
Shun
,
T.-T.
,
Tsau
,
C.-H.
, and
Chou
,
S.-Y.
,
2004
, “
Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys With Multiprincipal Metallic Elements
,”
Met. Mater. Trans. A
,
35
(
8
), pp.
2533
2536
. 10.1007/s11661-006-0234-4
20.
Ranganathan
,
S.
,
2003
, “
Alloyed Pleasures: Multimetallic Cocktails
,”
Curr. Sci.
,
85
(
10
), pp.
1404
1406
.
21.
Mishra
,
R. S.
,
Kumar
,
N.
, and
Komarasamy
,
M.
,
2015
, “
Lattice Strain Framework for Plastic Deformation in Complex Concentrated Alloys Including High Entropy Alloys
,”
Mater. Sci. Technol.
,
31
(
10
), pp.
1259
1263
. 10.1179/1743284715Y.0000000050
22.
Senkov
,
O. N.
,
Scott
,
J. M.
,
Senkova
,
S. V.
,
Miracle
,
D. B.
, and
Woodward
,
C. F.
,
2011
, “
Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy
,”
J. Alloys Compd.
,
509
(
20
), pp.
6043
6048
. 10.1016/j.jallcom.2011.02.171
23.
Senkov
,
O. N.
,
Wilks
,
G. B.
,
Miracle
,
D. B.
,
Chuang
,
C. P.
, and
Liaw
,
P. K.
,
2010
, “
Refractory High-Entropy Alloys
,”
Intermetallics
,
18
(
9
), pp.
1758
1765
. 10.1016/j.intermet.2010.05.014
24.
Lin
,
C. M.
,
Juan
,
C. C.
,
Chang
,
C. H.
,
Tsai
,
C. W.
, and
Yeh
,
J. W.
,
2015
, “
Effect of Al Addition on Mechanical Properties and Microstructure of Refractory AlxHfNbTaTiZr Alloys
,”
J. Alloys Compd.
,
624
(
5
), pp.
100
107
. 10.1016/j.jallcom.2014.11.064
25.
Liu
,
W. H.
,
Wu
,
Y.
,
He
,
J. Y.
,
Nieh
,
T. G.
, and
Lu
,
Z. P.
,
2013
, “
Grain Growth and the Hall-Petch Relationship in a High-Entropy FeCrNiCoMn Alloy
,”
Scr. Mater.
,
68
(
7
), pp.
526
529
. 10.1016/j.scriptamat.2012.12.002
26.
Ganji
,
R. S.
,
Sai Karthik
,
P.
,
Bhanu Sankara Rao
,
K.
, and
Rajulapati
,
K. V.
,
2017
, “
Strengthening Mechanisms in Equiatomic Ultrafine Grained AlCoCrCuFeNi High-Entropy Alloy Studied by Micro- and Nanoindentation Methods
,”
Acta Mater
,
125
, pp.
58
68
. 10.1016/j.actamat.2016.11.046
27.
He
,
J. Y.
,
Wang
,
H.
,
Huang
,
H. L.
,
Xu
,
X. D.
,
Chen
,
M. W.
,
Wu
,
Y.
,
Liu
,
X. J.
,
Nieh
,
T. G.
,
An
,
K.
, and
Lu
,
Z. P.
,
2016
, “
A Precipitation-Hardened High-Entropy Alloy With Outstanding Tensile Properties
,”
Acta Mater.
,
102
, pp.
187
196
. 10.1016/j.actamat.2015.08.076
28.
Pickering
,
E. J.
,
Muñoz-Moreno
,
R.
,
Stone
,
H. J.
, and
Jones
,
N. G.
,
2016
, “
Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi
,”
Scr. Mater.
,
113
, pp.
106
109
. 10.1016/j.scriptamat.2015.10.025
29.
Meyers
,
M.
, and
Chawla
,
K. K.
,
1984
,
Mechanical Metallurgy: Principles and Applications
,
Prentice Hall
,
Englewood Cliffs, NJ
.
30.
Yasuda
,
H. Y.
,
Miyamoto
,
H.
,
Cho
,
K.
, and
Nagase
,
T.
,
2017
, “
Formation of Ultrafine-Grained Microstructure in Al 0.3 CoCrFeNi High Entropy Alloys With Grain Boundary Precipitates
,”
Mater. Lett
,
199
, pp.
120
123
. 10.1016/j.matlet.2017.04.072
31.
Shahmir
,
H.
,
Nili-Ahmadabadi
,
M.
,
Shafiee
,
A.
,
Andrzejczuk
,
M.
,
Lewandowska
,
M.
, and
Langdon
,
T. G.
,
2018
, “
Effect of Ti on Phase Stability and Strengthening Mechanisms of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy
,”
Mater. Sci. Eng. A
,
725
, pp.
196
206
. 10.1016/j.msea.2018.04.014
32.
Anjabin
,
N.
,
Karimi Taheri
,
A.
, and
Kim
,
H. S.
,
2014
, “
Crystal Plasticity Modeling of the Effect of Precipitate States on the Work Hardening and Plastic Anisotropy in an Al-Mg-Si Alloy
,”
Comput. Mater. Sci
,
83
, pp.
78
85
. 10.1016/j.commatsci.2013.09.031
33.
Ghorbanpour
,
S.
,
Zecevic
,
M.
,
Kumar
,
A.
,
Jahedi
,
M.
,
Bicknell
,
J.
,
Jorgensen
,
L.
,
Beyerlein
,
I. J.
, and
Knezevic
,
M.
,
2017
, “
A Crystal Plasticity Model Incorporating the Effects of Precipitates in Superalloys: Application to Tensile, Compressive, and Cyclic Deformation of Inconel 718
,”
Int. J. Plast
,
99
, pp.
162
185
. 10.1016/j.ijplas.2017.09.006
34.
Wulfinghoff
,
S.
,
2014
,
Numerically Efficient Gradient Crystal Plasticity With a Grain Boundary Yield Criterion and Dislocation-Based Work-Hardening
,
Karlsruher Institut für Technologie (KIT)
.
35.
Keshavarz
,
S.
, and
Ghosh
,
S.
,
2015
, “
A Crystal Plasticity Finite Element Model for Flow Stress Anomalies in Ni3Al Single Crystals
,”
Philos. Mag.
,
95
(
24
), pp.
2639
2660
. 10.1080/14786435.2015.1073858
36.
Rossiter
,
J.
,
2015
,
Crystal Plasticity Based Modelling of Surface Roughness and Localized Deformation During Bending in Aluminum Polycrystals
,
University of Waterloo
.
37.
Elkhodary
,
K.
,
Sun
,
L.
,
Irving
,
D. L.
,
Brenner
,
D. W.
,
Ravichandran
,
G.
, and
Zikry
,
M. A.
,
2009
, “
Integrated Experimental, Atomistic, and Microstructurally Based Finite Element Investigation of the Dynamic Compressive Behavior of 2139 Aluminum
,”
ASME J. Appl. Mech. Trans.
,
76
(
5
), pp.
1
9
38.
Khanikar
,
P.
,
Liu
,
Y.
, and
Zikry
,
M. A.
,
2014
, “
Experimental and Computational Investigation of the Dynamic Behavior of Al-Cu-Li Alloys
,”
Mater. Sci. Eng. A
,
604
, pp.
67
77
. 10.1016/j.msea.2014.02.089
39.
Orsini
,
V. C.
, and
Zikry
,
M. A.
,
2001
, “
Void Growth and Interaction in Crystalline Materials
,”
Int. J. Plast.
,
17
(
10
), pp.
1393
1417
. 10.1016/S0749-6419(00)00091-7
40.
Zikry
,
M. A.
, and
Kao
,
M.
,
1996
, “
Inelastic Microstructural Failure Mechanisms in Crystalline Materials With High Angle Grain Boundaries
,”
J. Mech. Phys. Solids
,
44
(
11
), pp.
1765
1798
. 10.1016/0022-5096(96)00049-X
41.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
,
2002
, “
Prediction of Grain-Boundary Interfacial Mechanisms in Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
,
124
(
1
), pp.
88
96
.10.1115/1.1421611
42.
Wong
,
S.-K.
,
Shun
,
T.-T.
,
Chang
,
C.-H.
, and
Lee
,
C.-F.
,
2018
, “
Microstructures and Properties of Al0.3CoCrFeNiMnx High-Entropy Alloys
,”
Mater. Chem. Phys.
,
210
, pp.
146
151
. 10.1016/j.matchemphys.2017.07.085
43.
Taylor
,
A.
, and
Doyle
,
N. J.
,
1972
, “
Further Studies on the Nickel-Aluminum System. II. Vacancy Filling in [Beta] and [Delta]-Phase Alloys by Compression at High Temperatures
,”
J. App. Crystall.
,
5
(
3
), pp.
210
215
.
44.
Yoo
,
M. H.
,
Takasugi
,
T.
,
Hanada
,
S.
, and
Izumi
,
O.
,
1990
, “
Slip Modes in B2-Type Intermetallic Alloys
,”
Mater. Trans. JIM
,
31
(
6
), pp.
435
442
. 10.2320/matertrans1989.31.435
45.
Liu
,
Z.
,
Huang
,
B.
, and
Lin
,
D.
,
1999
, “
Computer Simulation of Dislocation Patterning
,”
J. Cent. South Univ. Technol
,
6
(
1
), pp.
4
7
. 10.1007/s11771-999-0020-8
46.
Berdovsky
,
Y. N.
,
2008
,
Intermetallics Research Progress
,
Nova Publishers
,
New York
.
47.
Xing
,
Z. P.
,
Guo
,
J. T.
,
Han
,
Y. F.
, and
Yu
,
L. G.
,
1997
, “
Microstructure and Mechanical Behavior of the NiAl-TiC in Situ Composite
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
28
(
4
), pp.
1079
1087
. 10.1007/s11661-997-0237-9
48.
Babu
,
C. S.
,
Sivaprasad
,
K.
,
Muthupandi
,
V.
, and
Szpunar
,
J. A.
,
2014
, “
Characterization of Nanocrystalline AlCoCrCuNiFeZn High Entropy Alloy Produced by Mechanical Alloying
,”
Proc. Mater. Sci.
,
5
, pp.
1020
1026
. 10.1016/j.mspro.2014.07.392
49.
Darolia
,
R.
,
Walston
,
W. S.
, and
Nathal
,
M. V.
,
1996
, “NiAl Alloys for Turbine Airfoils,”
Superalloys 1996
,
Minerals, Metals & Materials Society
, pp.
561
570
.
50.
Rao
,
J. C.
,
Ocelík
,
V.
,
Vainchtein
,
D.
,
Tang
,
Z.
,
Liaw
,
P. K.
, and
De Hosson
,
J. T. M.
,
2016
, “
The Fcc-Bcc Crystallographic Orientation Relationship in AlxCoCrFeNi High-Entropy Alloys
,”
Mater. Lett
,
176
, pp.
29
32
. 10.1016/j.matlet.2016.04.086
You do not currently have access to this content.