Surface and subsurface crack nucleation and growth mechanisms are elucidated for equiaxed (microstructure 1), elongated (microstructure 2), and colony (microstructure 3) microstructures of Ti6242. Prominent cleavage facets, indicative of a Stroh-type dislocation-pile phenomenon characterize the nucleation sites. Beachmarking and scanning electron microscopy (SEM) techniques are used to study fatigue crack growth rates and crack shape evolution in the short and long crack regimes. The studies reveal that surface crack growth rate data are generally comparable to the through-crack growth rate data in the long crack growth regime. However, the depth crack growth rates are somewhat slower than the through-crack growth rates. Surface crack evolution profiles are shown to exhibit a tendency towards “Preferred Propagation Paths” (PPPs). However, the magnitudes of the aspect ratios along the PPPs are different from those reported for square or rectangular cross sections subjected to cyclic tension or bending loads. Finally, the measured crack lengths and aspect ratios are compared with predictions obtained from a fracture mechanics model.

1.
Shankar, P., and Ravichandran, K. S., 2002, “Fatigue of Beta Annealed Ti-10V-2Fe-3Al Alloy: Effects of Aging and Mechanisms of Crack Nucleation,” Proc. Fatigue, A. F. Blom, ed., pp. 1789–1796.
2.
Spence, S. H., Evans, W. H., and Cope, M., 1997, “Dwell Fatigue of Ti 6246 at Near Ambient Temperatures,” Advances in Fracture Research, 9th International Conference on Fracture, Sydney, Australia, 3, Pergamon, pp. 1571–1578.
3.
Ravichandran, K. S., Jha, S. K., and Shankar, P. S., 2002, “Fatigue of Beta Titanium Alloys: Crack Initiation, Growth and Fatigue Life,” in Proc. Fatigue, A. F. Blom, ed., EMAS, Warley, Cradley Heath, U.K., 3, pp. 1751–1762.
4.
Stroh
,
A. N.
,
1954
,
Proc. Phys. Soc., London B
67
, pp.
427
436
.
5.
Evans
,
W. J.
, and
Bache
,
M. R.
,
1994
, “
Dwell-Sensitive Fatigue Under Biaxial Loads in the Near Alpha Titanium Alloy IMI685
,”
Int. J. Fatigue
,
16
, pp.
443
452
.
6.
Knott, J. F., 1973, Fundamentals of Fracture Mechanics, Butterworth.
7.
Peters
,
J. O.
,
Boyce
,
B. L.
,
Chen
,
X.
,
McNaney
,
J. M.
,
Hutchinson
,
J. W.
, and
Ritchie
,
R. O.
,
2002
, “
On the Application of the Kitagawa-Takahashi Diagram to Foreign-Object Damage and High Cycle Fatigue
,”
Eng. Fract. Mech.
,
69
, pp.
1425
1446
.
8.
Hicks
,
M. J.
, and
Pickard
,
A. C.
,
1992
, “
A Comparison of Theoretical and Experimental Methods of Calibrating the Electrical Potential Drop Technique for Crack Length Determination
,”
Int. J. Fract.
,
20
, pp.
91
101
.
9.
Suresh, S., 1991, Fatigue of Materials, Cambridge University Press, U.K.
10.
Sinha
,
V.
,
Mercer
,
C.
, and
Soboyejo
,
W. O.
,
2000
, “
An Investigation of Short and Long Fatigue Crack Growth Behavior of Ti-6Al-4V
,”
Mater. Sci. Eng. A
,
287
, pp.
30
42
.
11.
Soboyejo
,
W. O.
, and
Knott
,
J. F.
,
1991
, “
The Propagation of Non-Coplanar Semi-Elliptical Fatigue Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
1
), pp.
37
49
.
12.
Soboyejo
,
W. O.
,
Kishimoto
,
K.
,
Smith
,
R. A.
, and
Knott
,
J. F.
,
1989
, “
Study of the Interaction and Coalescence of Two Coplanar Fatigue Cracks in Bending
,”
Fatigue Fract. Eng. Mater. Struct.
,
12
(
6
), pp.
167
174
.
13.
Soboyejo
,
W. O.
,
Reed
,
R. C.
, and
Knott
,
J. F.
,
1990
, “
On the Calibration of the Direct Current Potential Difference Method for the Determination of Semi-Elliptical Crack Lengths
,”
Int. J. Fract.
,
44
, pp.
27
41
.
14.
Soboyejo
,
W. O.
, and
Knott
,
J. F.
,
1990
, “
Effects of Stress Ratio on Fatigue Crack Propagation in Q1N (HY80) Pressure Vessel Steel
,”
Int. J. Fatigue
,
12
, pp.
403
407
.
15.
Zhou
,
J.
, and
Soboyejo
,
W. O.
,
2002
, “
An Investigation of the Effects of Crack Front Curvature on the Crack-Tip Opening Displacement of A707 Steel
,”
Int. J. Fract.
,
115
(
3
), pp.
287
304
.
16.
Chesnutt, J., Thompson, A. W., and Williams, J. C., 1980, Titanium 80: Science and Technology, AIME, Warrendale, PA. p. 1875.
17.
Yoder
,
G. R.
,
Cooley
,
L. A.
, and
Crooker
,
T. W.
,
1977
, “
Observations on Microstructurally Sensitive Fatigue Crack Growth in a Widmanstatten Ti-6A1-4V Alloy
,”
Metall. Trans. A
,
8
, p.
1737
1737
.
18.
Yoder
,
G. R.
, and
Eylon
,
D.
,
1979
, “
On the Effect of Colony Size on Fatigue Crack Growth in Widmanstatten Structure Alpha+Beta Alloys
,”
Metall. Trans. A
,
10
(
11
), pp.
1808
1810
.
19.
Ravichandran
,
K. S.
,
1991
, “
Near Threshold Fatigue Crack Growth Behavior of a Titanium Alloy: Ti-6A1-4V
,”
Acta Metall.
,
39
, pp.
401
410
.
20.
Shademan, S., 2000, “Mechanism-Based Models of Fatigue Crack Growth,” Ph.D. thesis, The Ohio State University, Columbus, OH.
21.
Sinha, V., 1999, “Effects of Microstructure on Fatigue Behavior of α/β Titanium Alloys,” Ph.D. thesis, The Ohio State University, Columbus, OH.
22.
Suresh
,
S.
,
1985
, “
Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models
,”
Metall. Trans. A
,
16
, pp.
249
260
.
23.
Sehitoglu
,
H.
, and
Garcia
,
A. M.
,
1997
, “
Contact of Crack Surfaces During Fatigue
,”
Metall. Trans. A
,
28
, pp.
2263
2289
.
24.
Beevers
,
C. J.
, and
Halliday
,
M. D.
,
1979
, “
Nonclosure of Cracks and Fatigue Crack Growth in β Heat-Treated Ti-6Al-4V
,”
Int. J. Fract.
,
15
, pp.
R27–R30
R27–R30
.
25.
Corn
,
D. L.
,
1971
, “
A Study of Cracking Techniques for Obtaining Partial Thickness Cracks of Pre-Selected Depths and Shapes
,”
Eng. Fract. Mech.
,
3
(
1
), pp.
45
46
.
26.
Soboyejo
,
W. O.
, and
Knott
,
J. F.
,
1995
, “
An Investigation of Crack Closure and the Propagation of Semi-Elliptical Fatigue Cracks in Q1N (HY80) Pressure Vessel Steel
,”
Int. J. Fatigue
,
17
(
8
), pp.
577
581
.
27.
Jolles, M., and Tortoriello, V., 1983, “Geometric Variations During Fatigue Growth of Surface Flaws,” in Fracture Mechanics 14 ASTM STP 791, J. C. Lewis and G. Sines, eds., American Society of Testing and Materials, Philadelphia, PA, pp. 1-297–1-307.
28.
Newman
,
J. C.
, and
Raju
,
I. S.
,
1981
, “
An Empirical Stress Intensity Factor Equation for the Surface Crack
,”
Eng. Fract. Mech.
,
15
, pp.
185
192
.
29.
Fleck
,
N. A.
,
Smith
,
I. F. C.
, and
Smith
,
R. A.
,
1983
, “
Closure Behavior of Surface Cracks
,”
Fatigue Fract. Eng. Mater. Struct.
,
6
, pp.
225
239
.
30.
Taylor
,
D.
, and
Knott
,
J. F.
,
1981
, “
Fatigue Crack Propagation Behaviour of Short Cracks: The Effect of Microstructure
,”
Fatigue Fract. Eng. Mater. Struct.
,
4
, p.
147
147
.
31.
Soboyejo, W. O., 2000, Mechanical Properties of Engineered Materials, Marcel Dekker Publishers, New York.
32.
McClurg, R. C., Lawless, B. H., Gorelik, M., Gill, Y., and Piasak, R. S., 1999, “Fatigue Crack Growth of Titanium Rotor Alloys in Vacuum and Air,” Fatigue Behaior of Titanium Alloys, R. R. Boyer, D. Eylon and G. Lutjering, eds., The Minerals, Metals and Materials Society, Warrendale, PA, pp. 211–218.
33.
Shademan
,
S.
, and
Soboyejo
,
W. O.
,
2002
, “
An Investigation of Short Fatigue Crack Growth in Ti-6Al-4V With Colony Microstructures
,”
Mater. Sci. Eng., A
,
335
(
1-2
), pp.
116
127
.
34.
Mercer
,
C.
,
Shademan
,
S.
, and
Soboyejo
,
W. O.
,
2003
, “
An Investigation of the Micromechanisms of Fatigue Crack Growth in Structural Gas Turbine Engine Alloys
,”
J. Mater. Sci.
,
38
, pp.
291
305
.
35.
Hall
,
J. A.
,
1997
, “
Fatigue Crack Initiation in Alpha-Beta Titanium Alloys
,”
Int. J. Fatigue
,
19
, pp.
23
37
.
36.
Boyce
,
B. L.
,
Ritchie
,
R. O.
,
Campbell
,
J. P.
,
Roder
,
O.
,
Thompson
,
A. W.
, and
Milligan
,
W. W.
,
1999
, “
Threshold for High Cycle Fatigue in a Turbine Engine Ti-6Al-4V Alloy
,”
Int. J. Fatigue
,
21
, pp.
653
662
.
37.
Nakajima
,
K.
,
Terao
,
K.
, and
Miyata
,
T.
,
1998
, “
The Effect of Microstructure on Fatigue Crack Propagation of _ Titanium Alloys
,”
Mater. Sci. Eng., A
,
243
, pp.
176
181
.
38.
Hu
,
Y. M.
,
Floer
,
W.
,
Krupp
,
U.
, and
Christ
,
H. J.
,
2000
, “
Microstructurally Short Fatigue Crack Initiation and Growth in Ti-6.8Mo-4.5Fe-1.5A1
,”
Mater. Sci. Eng., A
,
278
, pp.
170
180
.
39.
Shen
,
W.
,
Soboyejo
,
W. O.
, and
Soboyejo
,
A. B. O.
,
2004
, “
An Investigation of Fatigue and Dwell Fatigue Crack Growth in Ti-6Al-2Sn-4Zr-2Mo-0.1Si
,”
Mech. Mater.
36
, pp.
117
140
.
40.
Dowling, N., 1993, Mechanical Behavior of Materials, Prentice–Hall, Englewood Cliffs, NJ.
41.
Bhattacharya
,
B.
, and
Ellingwood
,
B.
,
1998
, “
Continuum Damage Mechanics Analysis of Fatigue Crack Initiation
,”
Int. J. Fatigue
,
20
(
9
), pp.
631
639
.
42.
Demaid, A. P. A., and Lawley, A., 1986, “The Markham Mine Disaster,” Case Histories Involving Fatigue and Fracture Mechanics, ASTM STP 918, C. M. Hudson and T. P. Rich, Eds., American Society of Testing and Materials, Philadelphia, pp. 389–416.
You do not currently have access to this content.