Abstract

In this research, we propose an Error Separation Technique (EST) based on optical fiber sensors for on-machine straightness error measurement. Two fiber optic Fabry–Pérot interferometers have been developed serving as two displacement sensors. The displacement distance is computed according to the reflected spectrum from interferometers, which can achieve a sub-micrometer resolution. The two-point method has been employed to separate the straightness error of the slides and the profile error of a fine-polished standard block. The spacing distance between two interferometers is determined by the diameter of optical fibers so that the EST's resolution has the potential to reach the sub-millimeter scale. In the experiment, the straightness error has been measured on a commercially available computer numerical control machine tool, and the measurement has been conducted on its x-axis. The spacing distance between two optical fiber sensors is 1.5 mm which equals the EST's resolution along the machine tool's x-axis. The separated profile error of the measured standard block is around 30 µm which has been verified by a high precision Coordinate Measurement Machine (CMM). The magnitude of the separated straightness error is around 40 µm. This technique is flexible and simple to be conducted, which can contribute to the micro-machine tool calibration and other straightness error applications.

References

1.
Chen
,
B.
,
Xu
,
B.
,
Yan
,
L.
,
Zhang
,
E.
, and
Liu
,
Y.
,
2015
, “
Laser Straightness Interferometer System With Rotational Error Compensation and Simultaneous Measurement of Six Degrees of Freedom Error Parameters
,”
Opt. Express
,
23
(
7
), pp.
9052
9073
.
2.
Whitehouse
,
D. J.
,
1976
, “
Some Theoretical Aspects of Error Separation Techniques in Surface Metrology
,”
J. Phys. E
,
9
(
7
), pp.
531
536
.
3.
Tozawa
,
K.
,
Sato
,
H.
, and
O-hori
,
M.
,
1982
, “
A New Method for the Measurement of the Straightness of Machine Tools and Machined Work
,”
ASME J. Mech. Des.
,
104
(
3
), pp.
587
592
.
4.
Kiyono
,
S.
, and
Gao
,
W.
,
1994
, “
Profile Measurement of Machined Surface With a New Differential Method
,”
Precis. Eng.
,
16
(
3
), pp.
212
218
.
5.
Yin
,
Z. Q.
, and
Li
,
S. Y.
,
2006
, “
High Accuracy Error Separation Technique for On-Machine Measuring Straightness
,”
Precis. Eng.
,
30
(
2
), pp.
192
200
.
6.
Su
,
H.
,
Hong
,
M. S.
,
Li
,
Z. J.
,
Wei
,
Y. L.
, and
Xiong
,
S. B.
,
2002
, “
The Error Analysis and Online Measurement of Linear Slide Motion Error in Machine Tools
,”
Meas. Sci. Technol.
,
13
(
6
), pp.
895
902
.
7.
Fung
,
E. H. K.
, and
Yang
,
S. M.
,
2000
, “
An Error Separation Technique for Measuring Straightness Motion Error of a Linear Slide
,”
Meas. Sci. Technol.
,
11
(
10
), pp.
1515
1521
.
8.
Kiyono
,
S.
,
1988
, “
Erratum to : Study on Measurement of Surface Undulation (2nd Report)
,”
J. Jpn. Soc. Precis. Eng.
,
54
(
5
), pp.
976
976
.
9.
Omar
,
B. A.
,
Holloway
,
A. J.
, and
Emmony
,
D. C.
,
1990
, “
Differential Phase Quadrature Surface Profiling Interferometer
,”
Appl. Opt.
,
29
(
31
), p.
4715
.
10.
Yin
,
Z. Q.
, and
Li
,
S. Y.
,
2005
, “
Exact Straightness Reconstruction for On-Machine Measuring Precision Workpiece
,”
Precis. Eng.
,
29
(
4
), pp.
456
466
.
11.
Gao
,
W.
, and
Kiyono
,
S.
,
1997
, “
On-Machine Profile Measurement of Machined Surface Using the Combined Three-Point Method
,”
JSME Int. J. Ser. C: Dyn., Control, Rob., Des. Manuf.
,
40
(
2
), pp.
253
259
.
12.
Shimizu
,
H.
,
Yamashita
,
R.
,
Hashiguchi
,
T.
,
Miyata
,
T.
, and
Tamaru
,
Y.
,
2018
, “
Square Layout Four-Point Method for Two-Dimensional Profile Measurement and Self-Calibration Method of Zero-Adjustment Error
,”
Int. J. Autom. Technol
,
12
(
5
), pp.
707
713
.
13.
Fung
,
E. H. K.
,
Zhu
,
M.
,
Zhang
,
X. Z.
, and
Wong
,
W. O.
,
2014
, “
A Novel Fourier-Eight-Sensor (F8S) Method for Separating Straightness, Yawing and Rolling Motion Errors of a Linear Slide
,”
Measurement (Lond.)
,
47
(
1
), pp.
777
788
.
14.
Leal-Junior
,
A. G.
,
Marques
,
C.
,
Frizera
,
A.
, and
Pontes
,
M. J.
,
2018
, “
Multi-Interface Level in Oil Tanks and Applications of Optical Fiber Sensors
,”
Opt. Fiber Technol.
,
40
, pp.
82
92
.
15.
Bremer
,
K.
,
Weigand
,
F.
,
Zheng
,
Y.
,
Alwis
,
L. S.
,
Helbig
,
R.
, and
Roth
,
B.
,
2017
, “
Structural Health Monitoring Using Textile Reinforcement Structures With Integrated Optical Fiber Sensors
,”
Sensors
,
17
(
2
), p.
345
.
16.
Miah
,
K.
, and
Potter
,
D. K.
,
2017
, “
A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications
,”
Sensors
,
17
(
11
), p.
2511
.
17.
Zhou
,
F.
,
Kung
,
P.
,
Li
,
X.
,
Behjat
,
V.
, and
Jun
,
M. B. G.
,
2021
, “
Modeling of a Sampled Apodized Fiber Bragg Grating Moisture Sensor
,”
Opt. Fiber Technol.
,
65
, p.
102630
.
18.
Wang
,
X.
, and
Wolfbeis
,
O. S.
,
2019
, “
Fiber-Optic Chemical Sensors and Biosensors (2015–2019)
,”
Anal. Chem.
,
92
(
1
), pp.
397
430
.
19.
Gupta
,
B. D.
, and
Kant
,
R.
,
2018
, “
Recent Advances in Surface Plasmon Resonance Based Fiber Optic Chemical and Biosensors Utilizing Bulk and Nanostructures
,”
Opt. Laser Technol.
,
101
, pp.
144
161
.
20.
Gandhi
,
M. S.
,
Chu
,
S.
,
Senthilnathan
,
K.
,
Babu
,
P. R.
,
Nakkeeran
,
K.
, and
Li
,
Q.
,
2019
, “
Recent Advances in Plasmonic Sensor-Based Fiber Optic Probes for Biological Applications
,”
Appl. Sci.
,
9
(
5
), p.
949
.
21.
Zhou
,
F.
,
Su
,
H.
,
Joe
,
H.-E.
, and
Jun
,
M. B.-G.
,
2020
, “
Temperature Insensitive Fiber Optical Refractive Index Probe With Large Dynamic Range at 1,550 nm
,”
Sens. Actuators, A
,
312
, p.
112102
.
22.
Brambilla
,
G.
,
Finazzi
,
V.
, and
Richardson
,
D. J.
,
2004
, “
Ultra-Low-Loss Optical Fiber Nanotapers
,”
Opt. Express
,
12
(
10
), pp.
2258
2263
.
23.
Ward
,
J. M.
,
O’Shea
,
D. G.
,
Shortt
,
B. J.
,
Morrissey
,
M. J.
,
Deasy
,
K.
, and
Nic Chormaic
,
S. G.
,
2006
, “
Heat-and-Pull Rig for Fiber Taper Fabrication
,”
Rev. Sci. Instrum.
,
77
(
8
), p.
83105
.
24.
Xue
,
S.
,
van Eijkelenborg
,
M. A.
,
Barton
,
G. W.
, and
Hambley
,
P.
,
2007
, “
Theoretical, Numerical, and Experimental Analysis of Optical Fiber Tapering
,”
J. Lightwave Technol.
,
25
(
5
), pp.
1169
1176
.
25.
Zhou
,
F.
,
Duan
,
W.
,
Li
,
X.
,
Tsai
,
J.-T.
, and
Jun
,
M. B. G.
,
2021
, “
High Precision In-Situ Monitoring of Electrochemical Machining Process Using an Optical Fiber Fabry–Pérot Interferometer Sensor
,”
J. Manuf. Process.
,
68
, pp.
180
188
.
26.
Fu
,
X.
,
Bing
,
G.
,
Zhao
,
Q.
,
Rao
,
Z.
,
Cheng
,
K.
, and
Mulenga
,
K.
,
2016
, “
Improved Error Separation Technique for On-Machine Optical Lens Measurement
,”
Meas. Sci. Technol.
,
27
(
4
), p.
45005
.
27.
Tozawa
,
K.
,
Sato
,
H.
, and
O-Hori
,
M.
,
1982
, “
A New Method for the Measurement of the Straightness of Machine Tools and Machined Work
,”
ASME J. Mech. Des.
,
104
(
3
), pp.
587
592
.
You do not currently have access to this content.