Abstract

Heterogeneous material systems consisting of metallic structures and polymer matrixes are of significance for applications such as integrated circuits, microelectromechanical devices, antennas, sensors, actuators, and metamaterials. Scaly-foot snail which lives in the deep ocean exhibits high strength and temperature resistance due to unique shells made of metal and polymer. Recently, different multi-material structures have been fabricated with metal deposition using multiple manufacturing processes. However, using these complicated hybrid processes is challenging to construct complexthree-dimensional (3D) structures of heterogeneous material with enhanced properties, high resolution, and time efficiency. Here, we establish a novel manufacturing strategy to build bioinspired hierarchical structures with heterogeneous material systems using electrically assisted stereolithography. The photocurable printing solution that can act as an electrolyte for charge transfer was developed, and the curing characteristic of the printing solution was further investigated. A fundamental understanding of the formation mechanism of metallic structures on the polymer matrix was studied through physics-based multi-scale modeling and simulations. The correlation between metallic structures morphology, printing solution properties, and printing process parameters, and their effects in building bioinspired hierarchical structures with heterogeneous materials were identified. Demonstrative test cases were built to verify the printing performance of the proposed approach. This research work will deliver a scalable additive manufacturing (AM) process that can facilitate various interesting applications based on bioinspired heterogeneous material and structures.

References

1.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), p.
e1706539
.
2.
Yao
,
H.
,
Dao
,
M.
,
Imholt
,
T.
,
Huang
,
J.
,
Wheeler
,
K.
,
Bonilla
,
A.
,
Suresh
,
S.
, and
Ortiz
,
C.
,
2010
, “
Protection Mechanisms of the Iron-Plated Armor of a Deep-Sea Hydrothermal Vent Gastropod
,”
Proc. Natl. Acad. Sci. USA
,
107
(
3
), pp.
987
992
.
3.
Zhang
,
C.
,
Li
,
X.
,
Jiang
,
L.
,
Tang
,
D.
,
Xu
,
H.
,
Zhao
,
P.
,
Fu
,
J.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2021
, “
3D Printing of Functional Magnetic Materials: From Design to Applications
,”
Adv. Funct. Mater.
,
31
(
34
), p.
2102777
.
4.
Yang
,
Y.
,
Li
,
X.
,
Chu
,
M.
,
Sun
,
H.
,
Jin
,
J.
,
Yu
,
K.
,
Wang
,
Q.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2019
, “
Electrically Assisted 3D Printing of Nacre-Inspired Structures With Self-Sensing Capability
,”
Sci. Adv.
,
5
(
4
), p.
eaau9490
.
5.
Joralmon
,
D.
,
Alfarhan
,
S.
,
Kim
,
S.
,
Tang
,
T.
,
Jin
,
K.
, and
Li
,
X.
,
2022
, “
Three-Dimensional Printing of Liquid Crystals With Thermal Sensing Capability Via Multimaterial Vat Photopolymerization
,”
ACS Appl. Polym. Mater.
,
4
(
4
), pp.
2951
2959
.
6.
Li
,
X.
,
Yang
,
Y.
,
Xie
,
B.
,
Chu
,
M.
,
Sun
,
H.
,
Hao
,
S.
,
Chen
,
Y.
, and
Chen
,
Y.
,
2019
, “
3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel With Carbon Nanotubes
,”
Adv. Mater. Technol.
,
4
(
2
), p.
1800476
.
7.
Seol
,
S. K.
,
Kim
,
D.
,
Lee
,
S.
,
Kim
,
J. H.
,
Chang
,
W. S.
, and
Kim
,
J. T.
,
2015
, “
Electrodeposition-Based 3D Printing of Metallic Microarchitectures With Controlled Internal Structures
,”
Small
,
11
(
32
), pp.
3896
3902
.
8.
Zhu
,
Y.
,
Tang
,
T.
,
Zhao
,
S.
,
Joralmon
,
D.
,
Poit
,
Z.
,
Ahire
,
B.
,
Keshav
,
S.
,
Raje
,
A. R.
,
Blair
,
J.
, and
Zhang
,
Z.
,
2022
, “
Recent Advancements and Applications in 3D Printing of Functional Optics
,”
Addit. Manuf.
,
52
, p.
102682
.
9.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
, and
Hui
,
D.
,
2017
, “
3D Printing of Polymer Matrix Composites: A Review and Prospective
,”
Compos. B Eng.
,
110
, pp.
442
458
.
10.
Hudkins
,
J. R.
,
Wheeler
,
D. G.
,
Peña
,
B.
, and
Berlinguette
,
C. P.
,
2016
, “
Rapid Prototyping of Electrolyzer Flow Field Plates
,”
Energy Environ. Sci.
,
9
(
11
), pp.
3417
3423
.
11.
Rosa-Ortiz
,
S. M.
,
Kadari
,
K. K.
, and
Takshi
,
A.
,
2018
, “
Low Temperature Soldering Surface-Mount Electronic Components With Hydrogen Assisted Copper Electroplating
,”
MRS Adv.
,
3
(
18
), pp.
963
968
.
12.
Lazarus
,
N.
,
Bedair
,
S. S.
,
Hawasli
,
S. H.
,
Kim
,
M. J.
,
Wiley
,
B. J.
, and
Smith
,
G. L.
,
2019
, “
Selective Electroplating for 3D-Printed Electronics
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900126
.
13.
Angel
,
K.
,
Tsang
,
H. H.
,
Bedair
,
S. S.
,
Smith
,
G. L.
, and
Lazarus
,
N.
,
2018
, “
Selective Electroplating of 3D Printed Parts
,”
Addit. Manuf.
,
20
, pp.
164
172
.
14.
Hensleigh
,
R.
,
Cui
,
H.
,
Xu
,
Z.
,
Massman
,
J.
,
Yao
,
D.
,
Berrigan
,
J.
, and
Zheng
,
X.
,
2020
, “
Charge-Programmed Three-Dimensional Printing for Multi-Material Electronic Devices
,”
Nat. Electron.
,
3
(
4
), pp.
216
224
.
15.
Zhao
,
Z.
,
Bai
,
J.
,
Yao
,
Y.
, and
Wang
,
C.
,
2020
, “
Printing Continuous Metal Structures Via Polymer-Assisted Photochemical Deposition
,”
Mater. Today
,
37
, pp.
10
17
.
16.
Yang
,
X.
,
Sun
,
M.
,
Bian
,
Y.
, and
He
,
X.
,
2019
, “
A Room-Temperature High-Conductivity Metal Printing Paradigm With Visible-Light Projection Lithography
,”
Adv. Funct. Mater.
,
29
(
1
), p.
1807615
.
17.
Warr
,
C.
,
Valdoz
,
J. C.
,
Bickham
,
B. P.
,
Knight
,
C. J.
,
Franks
,
N. A.
,
Chartrand
,
N.
,
Van Ry
,
P. M.
,
Christensen
,
K. A.
,
Nordin
,
G. P.
, and
Cook
,
A. D.
,
2020
, “
Biocompatible PEGDA Resin for 3D Printing
,”
ACS Appl. Biol. Mater.
,
3
(
4
), pp.
2239
2244
.
18.
McLachlan
,
D. S.
,
Blaszkiewicz
,
M.
, and
Newnham
,
R. E.
,
1990
, “
Electrical Resistivity of Composites
,”
J. Am. Ceram. Soc.
,
73
(
8
), pp.
2187
2203
.
19.
Li
,
X.
,
Mao
,
H.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2019
, “
Mask Video Projection-Based Stereolithography With Continuous Resin Flow
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081007
.
20.
Li
,
X.
,
Xie
,
B.
,
Jin
,
J.
,
Chai
,
Y.
, and
Chen
,
Y.
,
2018
, “
3D Printing Temporary Crown and Bridge by Temperature Controlled Mask Image Projection Stereolithography
,”
Procedia Manuf.
,
26
, pp.
1023
1033
.
21.
Li
,
X.
,
Baldacchin
,
T.
,
Song
,
X.
, and
Chen
,
Y.
,
2016
, “
Multi-scale Additive Manufacturing: An Investigation on Building Objects With Macro-, Micro- and Nano-Scales Features
,”
11th International Conference on Micro Manufacturing
,
Irvine, CA
,
Mar. 29
, p.
96
.
22.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Southfield, MI
.
23.
Joyee
,
E. B.
,
Lu
,
L.
, and
Pan
,
Y.
,
2019
, “
Analysis of Mechanical Behavior of 3D Printed Heterogeneous Particle-Polymer Composites
,”
Compos. B Eng.
,
173
, p.
106840
.
24.
Yasui
,
M.
, and
Ikuta
,
K.
,
2017
, “
Modeling and Measurement of Curing Properties of Photocurable Polymer Containing Magnetic Particles and Microcapsules
,”
Microsyst. Nanoeng.
,
3
(
1
), p.
17035
.
25.
Schlesinger
,
M.
, and
Paunovic
,
M.
,
2011
,
Modern Electroplating
, 5th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Chen
,
C.
,
Uematsu
,
K.
,
Linse
,
K.
, and
Sigwart
,
J. D.
,
2017
, “
By More Ways Than One: Rapid Convergence at Hydrothermal Vents Shown by 3D Anatomical Reconstruction of Gigantopelta (Mollusca: Neomphalina)
,”
BMC Evol. Biol.
,
17
(
1
), pp.
1
19
.
You do not currently have access to this content.