Abstract

The objective of this work is to study friction surfacing process variability when depositing multilayered coatings. This is motivated by the need to maintain deposition quality when depositing multiple friction surfacing layers, whether for repair, remanufacturing, or new part creation using this solid-state metal additive manufacturing process. In this study, 10-mm-diameter 304L stainless steel rods were used to create up to five layers of 40-mm-long coatings on 304L substrates using a constant set of processing parameters. In-process measurement of forces (X, Y, Z), flash temperature, flash geometry, layer temperature, and post-process measurement of layer geometry, microhardness, and microstructure are used to characterize changes in the friction surfacing process as more layers are deposited. It was observed that with increasing layers: layer thickness and deposition efficiency decrease; offsetting of the deposition towards the retreating side, and temperature in the deposited layer increase; and flash temperature does not change. Metallurgical analyses of friction-surfaced cross-sections revealed fine grain refinement and transformation of base austenite to strain-induced martensite. It is concluded that the process parameters need to be adjusted even after the second or third layer is deposited, corrections to the tool path are required after a couple of layers, and the measured process forces, as well as deposited layer temperature, may be useful to monitor and control the process and its instabilities.

References

1.
Gandra
,
J.
,
Krohn
,
H.
,
Miranda
,
R. M.
,
Vilaça
,
P.
,
Quintino
,
L.
, and
dos Santos
,
J. F.
,
2014
, “
Friction Surfacing—A Review
,”
J. Mater. Process. Technol.
,
214
(
5
), pp.
1062
1093
.
2.
Seidi
,
E.
,
Miller
,
S. F.
, and
Carlson
,
B. E.
,
2021
, “
Friction Surfacing Deposition by Consumable Tools
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
120801
.
3.
Klopstock
,
H.
,
1941
, “An Improved Method of Joining or Welding Metals,” Patent Specification Ref. 572789.
4.
Bedford
,
G. M.
,
Vitanov
,
V. I.
, and
Voutchkov
,
I. I.
,
2001
, “
On the Thermo-Mechanical Events During Friction Surfacing of High Speed Steels
,”
Surf. Coat. Technol.
,
141
(
1
), pp.
34
39
.
5.
Rafi
,
H. K.
,
Phanikumar
,
G.
, and
Rao
,
K. P.
,
2011
, “
Material Flow Visualization During Friction Surfacing
,”
Metall. Mater. Trans. A
,
42
(
4
), pp.
937
939
.
6.
Isupov
,
F. Y.
,
Panchenko
,
O. V.
,
Naumov
,
A. A.
,
Alekseeva
,
M. D.
,
Zhabrev
,
L. A.
, and
Popovich
,
A. A.
,
2019
, “
Consumable Tool for Coating Deposition by Joint Deformation of the Base and Tool Materials
,”
Russ. Metall. (Met.)
,
2019
(
13
), pp.
1399
1406
.
7.
Yu
,
H. Z.
, and
Mishra
,
R. S.
,
2021
, “
Additive Friction Stir Deposition: A Deformation Processing Route to Metal Additive Manufacturing
,”
Mater. Res. Lett.
,
9
(
2
), pp.
71
83
.
8.
Phillips
,
B. J.
,
Avery
,
D. Z.
,
Liu
,
T.
,
Rodriguez
,
O. L.
,
Mason
,
C. J. T.
,
Jordon
,
J. B.
,
Brewer
,
L. N.
, and
Allison
,
P. G.
,
2019
, “
Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al–Mg–Si
,”
Materialia
,
7
(
1
), p.
100387
.
9.
Khodabakhshi
,
F.
, and
Gerlich
,
A. P.
,
2018
, “
Potentials and Strategies of Solid-State Additive Friction-Stir Manufacturing Technology: A Critical Review
,”
J. Manuf. Process.
,
36
(
1
), pp.
77
92
.
10.
Griffiths
,
R. J.
,
Garcia
,
D.
,
Song
,
J.
,
Vasudevan
,
V. K.
,
Steiner
,
M. A.
,
Cai
,
W.
, and
Yu Hang
,
Z.
,
2021
, “
Solid-State Additive Manufacturing of Aluminum and Copper Using Additive Friction Stir Deposition: Process-Microstructure Linkages
,”
Materialia
,
15
(
1
), p.
100967
.
11.
Lambrineas
,
P.
, and
Jewsbury
,
P.
,
1992
, “
Areal Coverage Using Friction Surfacing
J. Ship Prod.
,
8
(
3
), pp.
131
136
.
12.
Chandrasekaran
,
M.
,
Batchelor
,
A. W.
, and
Jana
,
S.
,
1997
, “
Study of the Interfacial Phenomena During Friction Surfacing of Aluminium With Steels
,”
J. Mater. Sci.
,
32
(
22
), pp.
6055
6062
.
13.
Khalid Rafi
,
H.
,
Kishore Babu
,
N.
,
Phanikumar
,
G.
, and
Prasad Rao
,
K.
,
2013
, “
Microstructural Evolution During Friction Surfacing of Austenitic Stainless Steel AISI 304 on Low Carbon Steel
,”
Metall. Mater. Trans. A
,
44
(
1
), pp.
345
350
.
14.
Puli
,
R.
, and
Janaki Ram
,
G. D.
,
2012
, “
Dynamic Recrystallization in Friction Surfaced Austenitic Stainless Steel Coatings
,”
Mater. Charact.
,
74
(
1
), pp.
49
54
.
15.
Guo
,
D.
,
Kwok
,
C. T.
, and
Chan
,
S. L. I.
,
2019
, “
Spindle Speed in Friction Surfacing of 316L Stainless Steel—How It Affects the Microstructure, Hardness and Pitting Corrosion Resistance
,”
Surf. Coat. Technol.
,
361
(
1
), pp.
324
341
.
16.
Amos
,
D. R.
,
1993
, “Method of Forming a Trailing Edge on a Steam Turbine Blade and the Blade Made Thereby,” U.S. Patent No. 5,183,390, issued February 2.
17.
Doughty
,
R. W.
,
Shaw
,
D. J.
, and
Gibson
,
D. E.
,
2009
, “Friction Stir Surfacing Process and Device for Treating Rails,” Patent No. WO 2009030960 A1.
18.
Yamashita
,
Y.
, and
Fujita
,
K.
,
2001
, “
Newly Developed Repairs on Welded Area of LWR Stainless Steel by Friction Surfacing
,”
J. Nucl. Sci. Technol.
,
38
(
10
), pp.
896
900
.
19.
Damodaram
,
R.
,
Rai
,
P.
,
Cyril Joseph Daniel
,
S.
,
Bauri
,
R.
, and
Yadav
,
D.
,
2021
, “
Friction Surfacing: A Tool for Surface Crack Repair
,”
Surf. Coat. Technol.
,
422
(
1
), p.
127482
.
20.
Agiwal
,
H.
,
Yeom
,
H.
,
Ross
,
K. A.
,
Sridharan
,
K.
, and
Pfefferkorn
,
F. E.
,
2022
, “
Leak-Tight Crack Repair for 304L Stainless Steel Using Friction Surfacing
,”
J. Manuf. Process.
,
79
, pp.
532
543
.
21.
Agiwal
,
H.
,
Yeom
,
H.
,
Sridharan
,
K.
,
Ross
,
K. A.
, and
Pfefferkorn
,
F. E.
,
2021
, “
Low-Force Friction Surfacing for Crack Repair in 304L Stainless Steel
,”
Friction Stir Welding and Processing XI
,
Springer
,
Cham
, pp.
55
65
.
22.
Batchelor
,
A. W.
,
Jana
,
S.
,
Koh
,
C. P.
, and
Tan
,
C. S.
,
1996
, “
The Effect of Metal Type and Multi-Layering on Friction Surfacing
,”
J. Mater. Process. Technol.
,
57
(
1–2
), pp.
172
181
.
23.
Tokisue
,
H.
,
Katoh
,
K.
,
Asahina
,
T.
, and
Usiyama
,
T.
,
2006
, “
Mechanical Properties of 5052/2017 Dissimilar Aluminum Alloys Deposit by Friction Surfacing
,”
Mater. Trans.
,
47
(
3
), pp.
874
882
.
24.
Dilip
,
J. J. S.
,
Babu
,
S.
,
Rajan
,
S. V.
,
Rafi
,
K. H.
,
Ram
,
G. J.
, and
Stucker
,
B. E.
,
2013
, “
Use of Friction Surfacing for Additive Manufacturing
,”
Mater. Manuf. Process.
,
28
(
2
), pp.
189
194
.
25.
Dilip
,
J. J. S.
, and
Janaki Ram
,
G. D.
,
2013
, “
Microstructure Evolution in Aluminum Alloy AA 2014 During Multilayer Friction Deposition
,”
Mater. Charact.
,
86
(
1
), pp.
146
151
.
26.
Gandra
,
J.
,
Vigarinho
,
P.
,
Pereira
,
D.
,
Miranda
,
R. M.
,
Velhinho
,
A.
, and
Vilaça
,
P.
,
2013
, “
Wear Characterization of Functionally Graded Al–SiC Composite Coatings Produced by Friction Surfacing
,”
Mater. Des.
,
52
(
1
), pp.
373
383
.
27.
Karthik
,
G. M.
,
Ram
,
G. J.
, and
Kottada
,
R. S.
,
2016
, “
Friction Deposition of Titanium Particle Reinforced Aluminum Matrix Composites
,”
Mater. Sci. Eng. A
,
653
(
1
), pp.
71
83
.
28.
Krall
,
S.
,
Baumann
,
C.
,
Agiwal
,
H.
,
Bleicher
,
F.
, and
Pfefferkorn
,
F.
,
2022
, “
Investigation of Multilayer Coating of EN AW 6060–T66 Using Friction Surfacing
,”
J. Mech. Eng.
,
22
(
1
), pp.
5
19
.
29.
Gandra
,
J.
,
Miranda
,
R. M.
, and
Vilaça
,
P.
,
2012
, “
Performance Analysis of Friction Surfacing
,”
J. Mater. Process. Technol.
,
212
(
8
), pp.
1676
1686
.
30.
Barka
,
L.
,
Balat-Pichelin
,
M.
,
Sans
,
J. L.
,
Annaloro
,
J.
, and
Omaly
,
P.
,
2017
, “
Influence of Oxidation and Emissivity for Metallic Alloys Space Debris During Their Atmospheric Entry
,”
Seventh European Conference on Space Debris
,
Darmstadt, Germany
,
Apr. 18–21
.
31.
Seetharaman
,
V.
, and
Krishnan
,
R.
,
1981
, “
Influence of the Martensitic Transformation on the Deformation Behavior of an AISI 316 Stainless Steel at Low Temperatures
,”
Mater. Sci.
,
16
(
2
), pp.
523
530
.
32.
Fukuda
,
T.
,
Kakeshita
,
T.
, and
Kindo
,
K.
,
2006
, “
Effect of High Magnetic Field and Uniaxial Stress at Cryogenic Temperatures on Phase Stability of Some Austenitic Stainless Steels
,”
Mater. Sci. Eng. A
,
438–440
(
1
), pp.
212
217
.
33.
Das
,
A.
,
Sivaprasad
,
S.
,
Ghosh
,
M.
,
Chakraborti
,
P. C.
, and
Tarafder
,
S.
,
2008
, “
Morphologies and Characteristics of Deformation Induced Martensite During Tensile Deformation of 304 LN2 Stainless Steel
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
283
286
.
34.
Christ
,
H.-J.
,
Grigorescu
,
A.
,
Müller-Bollenhagen
,
C.
, and
Zimmermann
,
M.
,
2015
,
Metastable Austenitic Stainless Steels and the Effect of Deformation-Induced Phase Transformation on the Fatigue Properties
,
Siegen
.
35.
Singh
,
A. K.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2015
, “
Pitting Corrosion Resistance and Bond Strength of Stainless Steel Overlay by Friction Surfacing on High Strength Low Alloy Steel
,”
Def. Technol.
,
11
(
3
), pp.
299
307
.
36.
Khalid Rafi
,
H.
,
Balasubramaniam
,
K.
,
Phanikumar
,
G.
, and
Prasad Rao
,
K.
,
2011
, “
Thermal Profiling Using Infrared Thermography in Friction Surfacing
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3425
3429
.
You do not currently have access to this content.