Abstract

Thermal deviation induced by ambient temperature changes and heat generated during machine operations influences the accuracy of machine tools. A thermal test is essential to evaluate the influence of thermal deviation. ISO 230-3 provides displacement sensor-based thermal tests for machine tools. This paper proposes a machining test that enables a user to visually, by the naked eye, observe the integrated thermal influence on the tool trajectory's displacement in the direction normal to the test piece surface from the length of the machined slots. The proposed test consists of the machining of the five surfaces to observe the thermal influence of the tool position with respect to the test piece in X, Y, and Z directions, as well as the position of two rotary axes with respect to the tool position. The advantages of the proposed test include that it requires no measuring instrument to quantitatively evaluate the thermal error in all directions. And since the thermal influence is evaluated by observing the position where the cutting tool leaves the test piece surface, where the cutting force is zero, the influence of the cutting force on the test results can be ignored. Thermal influences of a five-axis machine tool during the warm-up cycle are investigated by experiment to validate the feasibility of the proposed method. Results show that 150 min is needed for sufficient warm-up for the selected machine tool if permissible tolerance for thermal deviation is 2.5 µm for all the errors.

References

1.
Mayr
,
J.
,
Jedrzejewski
,
J.
,
Uhlmann
,
E.
,
Donmez,
M. A.
,
Knapp
,
W.
,
Härtig
,
F.
,
Wendt
,
K.
, et al
,
2012
, “
Thermal Issues in Machine Tools
,”
CIRP Ann.
,
61
(
2
), pp.
771
791
.
2.
Pahk
,
H.
, and
Lee
,
S. W.
,
2002
, “
Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error
,”
Int. J. Adv. Manuf. Technol.
,
20
(
7
), pp.
487
494
.
3.
Gebhardt
,
M.
,
Mayr
,
J.
,
Furrer
,
N.
,
Widmer
,
T.
,
Weikert
,
S.
, and
Knapp
,
W.
,
2014
, “
High Precision Grey-Box Model for Compensation of Thermal Errors on Five-Axis Machines
,”
CIRP Ann.
,
63
(
1
), pp.
509
512
.
4.
Jin
,
C.
,
Wu
,
B.
,
Hu
,
Y.
,
Yi
,
P.
, and
Cheng
,
Y.
,
2015
, “
Thermal Characteristics of a CNC Feed System Under Varying Operating Conditions
,”
Precis. Eng.
,
42
, pp.
151
164
.
5.
Shi
,
H.
,
Ma
,
C.
,
Yang
,
J.
,
Zhao
,
L.
,
Mei
,
X.
, and
Gong
,
G.
,
2015
, “
Investigation Into Effect of Thermal Expansion on Thermally Induced Error of Ball Screw Feed Drive System of Precision Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
97
, pp.
60
71
.
6.
Xiang
,
S.
,
Yao
,
X.
,
Du
,
Z.
, and
Yang
,
J.
,
2018
, “
Dynamic Linearization Modeling Approach for Spindle Thermal Errors of Machine Tools
,”
Mechatronics
,
53
, pp.
215
228
.
7.
Mian
,
N. S.
,
Fletcher
,
S.
,
Longstaff
,
A. P.
, and
Myers
,
A.
,
2013
, “
Efficient Estimation by FEA of Machine Tool Distortion Due to Environmental Temperature Perturbations
,”
Precis. Eng.
,
37
(
2
), pp.
372
379
.
8.
Mize
,
C. D.
, and
Ziegert
,
J. C.
,
2000
, “
Neural Network Thermal Error Compensation of a Machining Center
,”
Precis. Eng.
,
24
(
4
), pp.
338
346
.
9.
Vyroubal
,
J.
,
2012
, “
Compensation of Machine Tool Thermal Deformation in Spindle Axis Direction Based on Decomposition Method
,”
Precis. Eng.
,
36
(
1
), pp.
121
127
.
10.
Ma
,
C.
,
Liu
,
J.
, and
Wang
,
S.
,
2020
, “
Thermal Error Compensation of Linear Axis With Fixed-Fixed Installation
,”
Int. J. Mech. Sci.
,
175
, p.
105531
.
11.
Liu
,
K.
,
Liu
,
H.
,
Li
,
T.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2019
, “
Intelligentization of Machine Tools: Comprehensive Thermal Error Compensation of Machine-Workpiece System
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3865
3877
.
12.
Gebhardt
,
M.
,
Cube
,
P.
,
Knapp
,
W.
, and
Wegener
,
K.
,
2012
, “
Measurement Set-Ups and -Cycles for Thermal Characterization of Axes of Rotation of 5-Axis Machine Tools
,”
Proceedings of the 12th Euspen International Conference
,
Stockholm, Switzerland
,
June 2012
,
Institute of Machine Tools and Manufacturing (IWF), ETH Zurich
.
13.
ISO 230-3: 2020
,
2020
, “
Test Code for Machine Tools—Part 3: Determination of Thermal Effects
.”
14.
Bitar-Nehme
,
E.
, and
Mayer
,
J. R. R.
,
2018
, “
Modelling and Compensation of Dominant Thermally Induced Geometric Errors Using Rotary Axes’ Power Consumption
,”
CIRP Ann.
,
67
(
1
), pp.
547
550
.
15.
Xiang
,
S.
,
Li
,
H.
,
Deng
,
M.
, and
Yang
,
J.
,
2018
, “
Geometric Error Identification and Compensation for Non-Orthogonal Five-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2915
2929
.
16.
Liu
,
H.
,
Miao
,
E.
,
Zhuang
,
X.
, and
Wei
,
X.
,
2018
, “
Thermal Error Robust Modeling Method for CNC Machine Tools Based on a Split Unbiased Estimation Algorithm
,”
Precis. Eng.
,
51
, pp.
169
175
.
17.
Ibaraki
,
S.
,
Blaser
,
P.
,
Shimoike
,
M.
,
Takayama
,
N.
,
Nakaminami
,
M.
, and
Ido
,
Y.
,
2016
, “
Measurement of Thermal Influence on a Two-Dimensional Motion Trajectory Using a Tracking Interferometer
,”
CIRP Ann.
,
65
(
1
), pp.
483
486
.
18.
Mori
,
M.
,
Irino
,
N.
, and
Shimoike
,
M.
,
2019
, “
A New Measurement Method for Machine Tool Thermal Deformation on a Two-Dimensional Trajectory Using a Tracking Interferometer
,”
CIRP Ann.
,
68
(
1
), pp.
551
554
.
19.
Ibaraki
,
S.
,
Inui
,
H.
,
Hong
,
C.
,
Nishikawa
,
S.
, and
Shimoike
,
M.
,
2019
, “
On-Machine Identification of Rotary Axis Location Errors Under Thermal Influence by Spindle Rotation
,”
Precis. Eng.
,
55
, pp.
42
47
.
20.
Feng
,
W.
,
Li
,
Z.
,
Gu
,
Q.
, and
Yang
,
J.
,
2015
, “
Thermally Induced Positioning Error Modelling and Compensation Based on Thermal Characteristic Analysis
,”
Int. J. Mach. Tools Manuf.
,
93
, pp.
26
36
.
21.
Ibaraki
,
S.
, and
Ota
,
Y.
,
2014
, “
A Machining Test to Calibrate Rotary Axis Error Motions of Five-Axis Machine Tools and Its Application to Thermal Deformation Test
,”
Int. J. Mach. Tools Manuf.
,
86
, pp.
81
88
.
22.
Ibaraki
,
S.
, and
Okumura
,
R.
,
2021
, “
A Machining Test to Evaluate Thermal Influence on the Kinematics of a Five-Axis Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
163
, p.
103702
.
23.
Wiessner
,
M.
,
Blaser
,
P.
,
Böhl
,
S.
,
Mayr
,
J.
,
Knapp
,
W.
, and
Wegener
,
K.
,
2018
, “
Thermal Test Piece for 5-Axis Machine Tools
,”
Precis. Eng.
,
52
, pp.
407
417
.
24.
Ibaraki
,
S.
, and
Okumura
,
R.
,
2020
, “
Machining Tests to Evaluate Machine Tool Thermal Displacement in Z-Direction: Proposal to ISO 10791-10
,”
Int. J. Autom. Technol.
,
14
(
3
), pp.
380
385
.
25.
ISO/CD 10791-10:2020
,
2020
, “
Test Conditions for Machining Centres—Part 10: Evaluation of Thermal Distortions
.”
26.
OKUMA Website
,
2020
, “
Distortion of Machining Dimensions From Thermal Deformation[DB/OL]
,” https://www.okumaindia.com/thermo-friendly-dcmc.pdf
27.
Mareš
,
M.
,
Horejš
,
O.
, and
Havlík
,
L.
,
2020
, “
Thermal Error Compensation of a 5-Axis Machine Tool Using Indigenous Temperature Sensors and CNC Integrated Python Code Validated With a Machined Test Piece
,”
Precis. Eng.
,
66
, pp.
21
30
.
You do not currently have access to this content.