Abstract

The mechanics of large-strain deformation in cutting of metals is discussed, primarily from viewpoint of recent developments in in situ analysis of plastic flow and microstructure characterization. It is shown that a broad range of deformation parameters can be accessed in chip formation—strains of 1–10, strain rates of 10–105/s, and temperatures up to 0.7Tm—and controlled. This range is far wider than achievable by any other single-stage, severe plastic deformation (SPD) process. The resulting extreme deformation conditions produce a rich variety of microstructures in the chip. Four principal types of chip formation—continuous, shear-localized, segmented, and mushroom-type—as elucidated first by Nakayama (1974, “The Formation of ‘Saw-Toothed Chip’ in Metal Cutting,” Proceedings of International Conference on Production Engineering, Tokyo, pp. 572–577) are utilized to emphasize the diverse plastic flow phenomena, especially unsteady deformation modes that prevail in cutting. These chip types are intimately connected with the underlying flow, each arising from a distinct mode and triggered by an instability phenomenon. The role of plastic flow instabilities such as shear banding, buckling, and fracture in mediating unsteady flow modes is expounded, along with consequences of the flow modes and chip types for the cutting. Sinuous flow is shown to be the reason why gummy (highly strain-hardening) metals, although relatively soft, are so difficult to cut. Synthesizing the various observations, a hypothesis is put forth that it is the stability of flow modes that determines the mechanics of cutting. This leads to a flow-stability phase diagram that could provide a framework for predicting chip types and process attributes.

References

1.
Mullins
,
W. W.
, and
Shaw
,
M. C.
,
1968
,”
Metal Transformations: Informal Proceedings of the Second Buhl International Conference on Materials
,
Pittsburgh, PA
,
Gordon and Breach
.
2.
Ernst
,
H.
, and
Merchant
,
M. E.
,
1941
, “
Chip Formation, Friction and Finish, Surface Treatment of Metals
,”
ASM Symposium: The Surface Treatment of Metals
, pp.
299
378
.
3.
Ernst
,
H.
,
1938
, “
Physics of Metal Cutting
,”
ASM Symposium on Machining of Metals
,
American Society of Metals
,
Cleveland, OH
, pp.
1
34
.
4.
Shaw
,
M. C.
,
1954
,
Metal Cutting Principles
,
M.I.T. Press
,
Cambridge, MA
.
5.
Shaw
,
M. C.
,
1950
, “
A Quantized Theory of Strain Hardening as Applied to the Cutting of Metals
,”
J. Appl. Phys.
,
21
(
6
), pp.
599
606
. 10.1063/1.1699714
6.
Shaw
,
M. C.
,
1944
, “
Action of N-Primary Alcohols as Metal Cutting Fluids—Alternating Properties with Chain Length
,”
J. Am. Chem. Soc.
,
66
(
12
), pp.
2057
2059
. 10.1021/ja01240a015
7.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
. 10.1063/1.1707586
8.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting
,”
J. Appl. Phys.
,
16
(
6
), pp.
318
324
. 10.1063/1.1707596
9.
Piispanen
,
V.
,
1937
, “
Lastun Muodostuminen Teoria
,”
Tek. Aikakausl. (in Finnish)
,
27
, p.
315
. See translation at Piispanen, V., 1948, “Theory of Formation of Metal Chips,” J. Appl. Phys., 19(10), p. 876–881.
10.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to Machining
,”
ASME J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
11.
Oxley
,
P. L. B.
,
1989
,
Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood
,
West Sussex, England
.
12.
Kobayashi
,
S.
, and
Thomsen
,
E. G.
,
1962
, “
Metal-Cutting Analysis Re-Evaluation and New Method of Presentation of Theories
,”
ASME J. Eng. Ind.
,
84
(
1
), pp.
63
70
. 10.1115/1.3667440
13.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
623
654
. 10.1243/PIME_PROC_1959_173_053_02
14.
Okushima
,
K.
, and
Hitomi
,
K.
,
1961
, “
An Analysis of the Mechanism of Orthogonal Cutting and Its Application to Discontinuous Chip Formation
,”
ASME J. Eng. Ind.
,
83
(
4
), pp.
545
555
. 10.1115/1.3664594
15.
Ramalingam
,
S.
,
1967
, “
Plastic Deformation in Metal Cutting
,”
Ph.D. thesis
,
University of Illinois
.
16.
Strenkowski
,
J. S.
, and
Carroll
,
J. T.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
107
(
4
), pp.
349
354
. 10.1115/1.3186008
17.
Shih
,
A. J.
,
1995
, “
Finite Element Simulation of Orthogonal Metal Cutting
,”
ASME J. Eng. Ind.
,
117
(
1
), pp.
84
93
. 10.1115/1.2803283
18.
Usui
,
E.
, and
Shirakashi
,
T.
,
1982
, “Mechanics of Machining—From Description to Predictive Theory,”
On the Art of Cutting Metals- 75 Years Later
,
ASME
,
New York
, pp.
13
35
.
19.
Marusich
,
T. D.
, and
Ortiz
,
M.
,
1995
, “
Modelling and Simulation of High-Speed Machining
,”
Int. J. Numer. Methods Eng.
,
38
(
21
), pp.
3675
3694
. 10.1002/nme.1620382108
20.
Madhavan
,
V.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
2000
, “
Machining as a Wedge Indentation
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
128
139
. 10.1115/1.321157
21.
De Chiffre
,
L.
,
1990
, “
Metal Cutting: Mechanics and Applications
,”
Ph.D. thesis
,
Technical University of Denmark
.
22.
Efe
,
M.
,
Moscoso
,
W.
,
Trumble
,
K. P.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2012
, “
Mechanics of Large Strain Extrusion Machining and Application to Deformation Processing of Magnesium Alloys
,”
Acta Mater.
,
60
(
5
), pp.
2031
2042
. 10.1016/j.actamat.2012.01.018
23.
Moscoso
,
W.
,
Shankar
,
M. R.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2007
, “
Bulk Nanostructured Materials by Large Strain Extrusion Machining
,”
J. Mater. Res.
,
22
(
1
), pp.
201
205
. 10.1557/jmr.2007.0021
24.
Ramalingam
,
S.
, and
Black
,
J. T.
,
1972
, “
On the Metal Physical Considerations in the Machining of Metals
,”
ASME J. Eng. Ind.
,
94
(
4
), pp.
1215
1224
. 10.1115/1.3428342
25.
Zorev
,
N. N.
,
1966
,
Metal Cutting Mechanics
,
Pergamon Press
,
Oxford, England
.
26.
Kececioglu
,
D.
,
1958
, “
Shear-Strain Rate in Metal Cutting and Its Effects on Shear-Flow Stress
,”
Trans. ASME
,
80
(
1
), p.
158
.
27.
Kececioglu
,
D.
,
1960
, “
Shear-Zone Size, Compressive Stress, and Shear Strain in Metal-Cutting and Their Effects on Mean Shear-Flow Stress
,”
ASME J. Eng. Ind.
,
82
(
1
), pp.
79
86
. 10.1115/1.3663007
28.
Brown
,
T. L.
,
Swaminathan
,
S.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
,
King
,
A. H.
, and
Trumble
,
K. P.
,
2002
, “
Low-Cost Manufacturing Process for Nanostructured Metals and Alloys
,”
J. Mater. Res.
,
17
(
10
), pp.
2484
2488
. 10.1557/JMR.2002.0362
29.
Childs
,
T. H. C.
,
1971
, “
A New Visio-Plasticity Technique and a Study of Curly Chip Formation
,”
Int. J. Mech. Sci.
,
13
(
4
), pp.
373-387
.
30.
Lee
,
S.
,
Hwang
,
J.
,
Shankar
,
M. R.
,
Chandrasekar
,
S.
, and
Dale Compton
,
W.
,
2006
, “
Large Strain Deformation Field in Machining
,”
Metall. Mater. Trans. A
,
37
(
5
), pp.
1633
1643
. 10.1007/s11661-006-0105-z
31.
Gnanamanickam
,
E. P.
,
Lee
,
S.
,
Sullivan
,
J. P.
, and
Chandrasekar
,
S.
,
2009
, “
Direct Measurement of Large-Strain Deformation Fields by Particle Tracking
,”
Meas. Sci. Technol.
,
20
(
9
), p.
095710
. 10.1088/0957-0233/20/9/095710
32.
Guo
,
Y.
,
Saldana
,
C.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2011
, “
Controlling Deformation and Microstructure on Machined Surfaces
,”
Acta Mater.
,
59
(
11
), pp.
4538
4547
. 10.1016/j.actamat.2011.03.076
33.
Brown
,
T. L.
,
Saldana
,
C.
,
Murthy
,
T. G.
,
Mann
,
J. B.
,
Guo
,
Y.
,
Allard
,
L. F.
,
King
,
A. H.
,
Compton
,
W. D.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2009
, “
A Study of the Interactive Effects of Strain, Strain Rate and Temperature in Severe Plastic Deformation of Copper
,”
Acta Mater.
,
57
(
18
), pp.
5491
5500
. 10.1016/j.actamat.2009.07.052
34.
Swaminathan
,
S.
,
Ravi Shankar
,
M.
,
Rao
,
B. C.
,
Compton
,
W. D.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Trumble
,
K. P.
,
2007
, “
Severe Plastic Deformation (SPD) and Nanostructured Materials by Machining
,”
J. Mater. Sci.
,
42
(
5
), pp.
1529
1541
. 10.1007/s10853-006-0745-9
35.
Swaminathan
,
S.
,
Shankar
,
M. R.
,
Lee
,
S.
,
Hwang
,
J.
,
King
,
A. H.
,
Kezar
,
R. F.
,
Rao
,
B. C.
,
Brown
,
T. L.
,
Chandrasekar
,
S.
,
Compton
,
W. D.
, and
Trumble
,
K. P.
,
2005
, “
Large Strain Deformation and Ultra-Fine Grained Materials by Machining
,”
Mater. Sci. Eng. A
,
410–411
, pp.
358
363
. 10.1016/j.msea.2005.08.139
36.
Shankar
,
M. R.
,
Rao
,
B. C.
,
Lee
,
S.
,
Chandrasekar
,
S.
,
King
,
A. H.
, and
Compton
,
W. D.
,
2006
, “
Severe Plastic Deformation (SPD) of Titanium at Near-Ambient Temperature
,”
Acta Mater.
,
54
(
14
), pp.
3691
3700
. 10.1016/j.actamat.2006.03.056
37.
Saldana
,
C.
,
Swaminathan
,
S.
,
Brown
,
T. L.
,
Moscoso
,
W.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2010
, “
Unusual Applications of Machining: Controlled Nanostructuring of Materials and Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030908
. 10.1115/1.4001665
38.
Pu
,
Z.
,
Yang
,
S.
,
Song
,
G.-L.
,
Dillon
,
O. W.
,
Puleo
,
D. A.
, and
Jawahir
,
I. S.
,
2011
, “
Ultrafine-Grained Surface Layer on Mg–Al–Zn Alloy Produced by Cryogenic Burnishing for Enhanced Corrosion Resistance
,”
Scr. Mater.
,
65
(
6
), pp.
520
523
. 10.1016/j.scriptamat.2011.06.013
39.
Embury
,
J. D.
, and
Fisher
,
R. M.
,
1966
, “
The Structure and Properties of Drawn Pearlite
,”
Acta Metall.
,
14
(
2
), pp.
147
159
. 10.1016/0001-6160(66)90296-3
40.
Langford
,
G.
, and
Cohen
,
M.
,
1969
, “
Strain Hardening of Iron by Severe Plastic Deformation
,”
ASM Trans. Quart.
,
62
(
3
), pp.
623
638
.
41.
Trent
,
E. M.
,
1977
,
Metal Cutting
,
Butterworths
,
London
.
42.
Jackson
,
P. S.
, and
Wright
,
P. K.
,
1982
, “
Application of Plastic Boundary Layer Theory to Metal Machining
,”
ASME J. Eng. Ind.
,
104
(
4
), pp.
358
362
. 10.1115/1.3185842
43.
Wright
,
P. K.
,
Horne
,
J. G.
, and
Tabor
,
D.
,
1979
, “
Boundary Conditions at the Chip-Tool Interface in Machining: Comparisons Between Seizure and Sliding Friction
,”
Wear
,
54
(
2
), pp.
371
390
. 10.1016/0043-1648(79)90128-5
44.
Dautzenberg
,
J. H.
, and
Zaat
,
J. H.
,
1973
, “
Quantitative Determination of Deformation by Sliding Wear
,”
Wear
,
23
(
1
), pp.
9
19
. 10.1016/0043-1648(73)90036-7
45.
Drucker
,
D. C.
,
1949
, “
An Analysis of the Mechanics of Metal Cutting
,”
J. Appl. Phys.
,
20
(
11
), pp.
1013
1021
. 10.1063/1.1698265
46.
Thomsen
,
E. G.
, and
Lapsley,
J. T.
, Jr.
,
1954
, “
Experimental Stress Determination Within a Metal During Plastic Flow
,”
Proc. Soc. Exp. Stress Anal.
,
11
(
2
), pp.
59
68
.
47.
Attia
,
M. H.
, and
Kops
,
L.
, eds.,
1988
, “Thermal Aspects in Manufacturing,” ASME-PED.
48.
Saldana
,
C.
,
Murthy
,
T. G.
,
Shankar
,
M. R.
,
Stach
,
E. A.
, and
Chandrasekar
,
S.
,
2009
, “
Stabilizing Nanostructured Materials by Coherent Nanotwins and Their Grain Boundary Triple Junction Drag
,”
Appl. Phys. Lett.
,
94
(
2
), p.
021910
. 10.1063/1.3072595
49.
Lu
,
K.
,
Lu
,
L.
, and
Suresh
,
S.
,
2009
, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
,”
Science
,
324
(
5925
), pp.
349
352
. 10.1126/science.1159610
50.
Wang
,
Y.
,
Chen
,
M.
,
Zhou
,
F.
, and
Ma
,
E.
,
2002
, “
High Tensile Ductility in a Nanostructured Metal
,”
Nature
,
419
(
6910
), pp.
912
915
. 10.1038/nature01133
51.
Dalla Torre
,
F.
,
Lapovok
,
R.
,
Sandlin
,
J.
,
Thomson
,
P. F.
,
Davies
,
C. H. J.
, and
Pereloma
,
E. V.
,
2004
, “
Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1-16 Passes
,”
Acta Mater.
,
52
(
16
), pp.
4819
4832
. 10.1016/j.actamat.2004.06.040
52.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
2006
, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
,
51
(
7
), pp.
881
981
. 10.1016/j.pmatsci.2006.02.003
53.
Steeds
,
J.
,
1966
, “
Dislocation Arrangement in Copper Single Crystals as a Function of Strain
,”
Proc. R. Soc. A
,
292
(
1430
), pp.
343
373
.
54.
Kobayashi
,
A.
,
1967
,
Machining of Plastics
,
McGraw-Hill
,
New York
.
55.
Armarego
,
E. J. A.
, and
Brown
,
R. H.
,
1969
,
The Machining of Metals
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
56.
Shaw
,
M. C.
, and
Vyas
,
A.
,
1993
, “
Chip Formation in the Machining of Hardened Steel
,”
CIRP Ann.
,
42
(
1
), pp.
29
33
. 10.1016/S0007-8506(07)62385-3
57.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1980
, “
On the Mechanics of Chip Segmentation in Machining
,” ASME J. Eng. Ind.,
103
(
1
), pp.
33
51
.
58.
Nakayama
,
K.
,
1974
, “
The Formation of ‘Saw-Toothed Chip’ in Metal Cutting
,”
Proceedings of International Conference on Production Engineering
,
Tokyo
, pp.
572
577
.
59.
Williams
,
J. E.
,
Smart
,
E. F.
, and
Milner
,
D. R.
,
1970
, “
The Metallurgy of Machining. Part I: Basic Considerations and the Cutting of Pure Metals
,”
Metallurgia
,
81
(
483
), pp.
3
10
.
60.
Yeung
,
H.
,
Viswanathan
,
K.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
Sinuous Flow in Metals
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
32
), pp.
9828
9832
. 10.1073/pnas.1509165112
61.
Schneider
,
G.
,
2009
, “
Machinability of Metals
,”
Am. Mach.
62.
Yeung
,
H.
,
Viswanathan
,
K.
,
Udupa
,
A.
,
Mahato
,
A.
, and
Chandrasekar
,
S.
,
2017
, “
Sinuous Flow in Cutting of Metals
,”
Phys. Rev. Appl.
,
8
(
5
), p.
054044
. 10.1103/PhysRevApplied.8.054044
63.
Udupa
,
A.
,
Viswanathan
,
K.
,
Ho
,
Y.
, and
Chandrasekar
,
S.
,
2017
, “
The Cutting of Metals via Plastic Buckling
,”
Proc. R. Soc. A
,
473
(
2202
), p.
20160863
. 10.1098/rspa.2016.0863
64.
Shaw
,
M. C.
,
Dirke
,
S. O.
,
Smith
,
P. A.
,
Cook
,
N. H.
,
Loewen
,
E. G.
, and
Yang
,
C. T.
,
1954
, “Machining Titanium,” MIT Report to U. S. Air Force.
65.
Rice
,
W. B.
,
1961
, “
The Formation of Continuous Chips in Metal Cutting
,”
Can. Eng. J.
, pp.
41
45
.
66.
Salmon
,
R.
,
Rice
,
W. B.
, and
Russel
,
L. T.
,
1962
, “
Force Variation During the Formation of Continuous Segmented Chips in Metal Cutting
,”
Can. Eng. J.
, pp.
59
62
.
67.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
189
193
. 10.1115/1.3629585
68.
Merchant
,
M. E.
,
Krabacher
,
E. J.
,
Young
,
H. W.
, and
Miller
,
J. H.
,
1954
, “
Titanium Is Unorthodox When Machined… Here’s Why
,”
Am. Mach.
,
98
, p.
118
.
69.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Mahato
,
A.
,
Sundaram
,
N. K.
,
M’Saoubi
,
R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Geometric Flow Control of Shear Bands by Suppression of Viscous Sliding
,”
Proc. R. Soc. A
,
472
(
2192
), p.
20160167
. 10.1098/rspa.2016.0167
70.
Yadav
,
S.
,
Feng
,
G.
, and
Sagapuram
,
D.
,
2019
, “
Dynamics of Shear Band Instabilities in Cutting of Metals
,”
CIRP Ann.
,
68
(
1
), pp.
45
48
. 10.1016/j.cirp.2019.04.030
71.
Cook
,
N. H.
,
Finnie
,
I.
, and
Shaw
,
M. C.
,
1954
, “
Discontinuous Chip Formation
,”
Trans. ASME
,
76
(
2
), pp.
153
162
.
72.
Field
,
M.
, and
Merchant
,
M. E.
,
1949
, “
The Mechanics of the Formation of the Discontinuous Chip in Metal Cutting
,”
Trans. ASME
,
71
, p.
421
.
73.
Gane
,
N.
,
1979
, “
Fracture During the Machining of Brass
,”
Fracture at Work: Fourth Tewksbury Symposium
,
D. S.
Mansell
, and
G. H.
Vasey
, eds.,
Melbourne
, pp.
13.1
13.22
.
74.
Enahoro
,
H. E.
, and
Oxley
,
P. L. B.
,
1961
, “
An Investigation of the Transition From a Continuous to a Discontinuous Chip in Orthogonal Machining
,”
Int. J. Mech. Sci.
,
3
(
3
), pp.
145
156
. 10.1016/0020-7403(61)90001-7
75.
Nakayama
,
K.
,
Takagi
,
J.
, and
Nakano
,
T.
,
1974
, “
Peculiarity in the Grinding of Hardened Steel
,”
CIRP Ann.
,
23
(
1
), pp.
89
90
. 10.1016/S0007-8506(07)61592-3
76.
Obikawa
,
T.
, and
Usui
,
E.
,
1996
, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
. 10.1115/1.2831013
77.
Atkins
,
A. G.
,
2003
, “
Modelling Metal Cutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems
,”
Int. J. Mech. Sci.
,
45
(
2
), pp.
373
396
. 10.1016/S0020-7403(03)00040-7
78.
Vyas
,
A.
, and
Shaw
,
M. C.
,
1999
, “
Mechanics of Saw-Tooth Chip Formation in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
163
172
. 10.1115/1.2831200
79.
Davies
,
M. A.
,
Burns
,
T. J.
, and
Evans
,
C. J.
,
1997
, “
On the Dynamics of Chip Formation in Machining Hard Metals
,”
CIRP Ann.
,
46
(
1
), pp.
25
30
. 10.1016/S0007-8506(07)60768-9
80.
Saei
,
M.
,
Udupa
,
A.
,
Viswanathan
,
K.
,
Sugihara
,
T.
,
M’Saoubi
,
R.
, and
Chandrasekar
,
S.
,
2019
, “
Controlling Segmentation in Cutting of Metals
,”
CIRP Ann.
,
68
(
1
), pp.
41
44
. 10.1016/j.cirp.2019.04.073
81.
Guo
,
Y.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. A
,
471
(
2178
), p.
20150194
. 10.1098/rspa.2015.0194
82.
Cockcroft
,
M. G.
, and
Latham
,
D. J.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
,
96
(
1
), pp.
33
39
.
83.
Sagapuram
,
D.
, and
Viswanathan
,
K.
,
2018
, “
Evidence for Bingham Plastic Boundary Layers in Shear Banding of Metals
,”
Extreme Mech. Lett.
,
25
, pp.
27
36
. 10.1016/j.eml.2018.10.002
84.
Zener
,
C.
,
1948
, “The Micro-Mechanism of Fracture,”
Fracturing of Metals
,
American Society of Metals
,
Cleveland, OH
, pp.
3
31
.
85.
Marchand
,
A.
, and
Duffy
,
J.
,
1988
, “
An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel
,”
J. Mech. Phys. Solids
,
36
(
3
), pp.
251
283
. 10.1016/0022-5096(88)90012-9
86.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
2995
3010
. 10.1007/s11661-002-0284-1
87.
Komanduri
,
R.
, and
von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
. 10.1016/0043-1648(81)90242-8
88.
Childs
,
T.
,
2014
, “Adiabatic Shearing in Metal Machining,”
CIRP Encyclopedia of Production Engineering
,
Springer
,
Berlin, Heidelberg
, pp.
27
33
.
89.
Lemaire
,
J. C.
, and
Backofen
,
W. A.
,
1972
, “
Adiabatic Instability in the Orthogonal Cutting of Steel
,”
Metall. Mater. Trans. B
,
3
(
2
), pp.
481
485
. 10.1007/BF02642052
90.
Komanduri
,
R.
,
1993
, “
Machining and Grinding: A Historical Review of the Classical Papers
,”
ASME Appl. Mech. Rev.
,
46
(
3
), pp.
80
132
. 10.1115/1.3121404
91.
Ramalingam
,
S.
, and
Black
,
J. T.
,
1973
, “
An Electron Microscopy Study of Chip Formation
,”
Metall. Trans.
,
4
(
4
), pp.
1103
1112
. 10.1007/BF02645614
92.
Black
,
J. T.
,
1972
, “
Shear Front-Lamella Structure in Large Strain Plastic Deformation Processes
,”
ASME J. Eng. Ind.
,
94
(
1
), pp.
307
313
. 10.1115/1.3428132
93.
von Turkovich
,
B. F.
,
1970
, “
Shear Stress in Metal Cutting
,”
ASME J. Eng. Ind.
,
92
(
1
), pp.
151
157
. 10.1115/1.3427700
94.
Johnson
,
W.
,
1987
, “
Henri Tresca as the Originator of Adiabatic Heat Lines
,”
Int. J. Mech. Sci.
,
29
(
5
), pp.
301
310
. 10.1016/0020-7403(87)90113-5
95.
Dodd
,
B.
, and
Bai
,
Y.
,
2012
,
Adiabatic Shear Localization
,
Elsevier
,
New York
.
96.
Kravz-Tarnavskii
,
V. P.
,
1928
, “
A Peculiar Band Discovered in Steel (in Russian)
,”
J. Russ. Metall. Soc.
,
3
, pp.
162
167
.
97.
Dodd
,
B.
,
Walley
,
S. M.
,
Yang
,
R.
, and
Nesterenko
,
V. F.
,
2015
, “
Major Steps in the Discovery of Adiabatic Shear Bands
,”
Metall. Mater. Trans. A
,
46
(
10
), pp.
4454
4458
. 10.1007/s11661-015-2739-1
98.
Zener
,
C.
, and
Hollomon
,
J. H.
,
1944
, “
Effect of Strain Rate upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
. 10.1063/1.1707363
99.
Backofen
,
W. A.
,
1972
,
Deformation Processing
,
Addison-Wesley
,
Reading, MA
.
100.
Basinski
,
Z.
,
1957
, “
The Instability of Plastic Flow of Metals at Very Low Temperatures
,”
Proc. R. Soc. A
,
240
(
1221
), pp.
229
242
.
101.
Chin
,
G. Y.
,
Hosford
,
W. F.
, and
Backofen
,
W. A.
,
1964
, “
Influence of the Mechanical Loading System on Low-Temperature Plastic Instability
,”
Trans. Metall. Soc. AIME
,
230
(
5
), pp.
1043
1049
.
102.
Semiatin
,
S. L.
, and
Rao
,
S. B.
,
1983
, “
Shear Localization During Metal Cutting
,”
Mater. Sci. Eng.
,
61
(
2
), pp.
185
192
. 10.1016/0025-5416(83)90200-8
103.
Burns
,
T. J.
, and
Davies
,
M. A.
,
1997
, “
Nonlinear Dynamics Model for Chip Segmentation in Machining
,”
Phys. Rev. Lett.
,
79
(
3
), pp.
447
450
. 10.1103/PhysRevLett.79.447
104.
Molinari
,
A.
,
Musquar
,
C.
, and
Sutter
,
G.
,
2002
, “
Adiabatic Shear Banding in High Speed Machining of Ti-6Al-4V: Experiments and Modeling
,”
Int. J. Plast.
,
18
(
4
), pp.
443
459
. 10.1016/S0749-6419(01)00003-1
105.
Hua
,
J.
, and
Shivpuri
,
R.
,
2004
, “
Prediction of Chip Morphology and Segmentation During the Machining of Titanium Alloys
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
124
133
. 10.1016/j.jmatprotec.2004.01.028
106.
Childs
,
T. H. C.
,
Arrazola
,
P. J.
,
Aristimuno
,
P.
,
Garay
,
A.
, and
Sacristan
,
I.
,
2018
, “
Ti6Al4 V Metal Cutting Chip Formation Experiments and Modelling Over a Wide Range of Cutting Speeds
,”
J. Mater. Process. Technol.
,
255
, pp.
898
913
. 10.1016/j.jmatprotec.2018.01.026
107.
Melkote
,
S. N.
,
Liu
,
R.
,
Fernandez-Zelaia
,
P.
, and
Marusich
,
T.
,
2015
, “
A Physically Based Constitutive Model for Simulation of Segmented Chip Formation in Orthogonal Cutting of Commercially Pure Titanium
,”
CIRP Ann.
,
64
(
1
), pp.
65
68
. 10.1016/j.cirp.2015.04.060
108.
Chen
,
G.
,
Ren
,
C.
,
Yang
,
X.
,
Jin
,
X.
, and
Guo
,
T.
,
2011
, “
Finite Element Simulation of High-Speed Machining of Titanium Alloy (Ti-6Al-4V) Based on Ductile Failure Model
,”
Int. J. Adv. Manuf. Technol.
,
56
(
9–12
), pp.
1027
1038
. 10.1007/s00170-011-3233-6
109.
Barry
,
J.
, and
Byrne
,
G.
,
2002
, “
The Mechanisms of Chip Formation in Machining Hardened Steels
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
528
535
. 10.1115/1.1455643
110.
Turley
,
D. M.
,
Doyle
,
E. D.
, and
Ramalingam
,
S.
,
1982
, “
Calculation of Shear Strains in Chip Formation in Titanium
,”
Mater. Sci. Eng.
,
55
(
1
), pp.
45
48
. 10.1016/0025-5416(82)90082-9
111.
Siemers
,
C.
,
Baeker
,
M.
,
Mukherji
,
D.
, and
Rösler
,
J.
,
2003
, “
Microstructure Evolution in Shear Bands During the Chip Formation of Ti6Al4V
,”
Proceedings of the 10th World Titanium Conference Ti-2003
,
Hamburg, Germany
, p.
853
.
112.
Gente
,
A.
,
Hoffmeister
,
H. W.
, and
Evans
C.J.
,
2001
, “
Chip Formation in Machining Ti6AI4V at Extremely High Cutting Speeds
,”
CIRP Ann.
,
50
(
1
), pp.
49
52
. 10.1016/S0007-8506(07)62068-X
113.
Yadav
,
S.
, and
Sagapuram
,
D.
,
2020
, “
In Situ Analysis of Shear Bands and Boundary Layer Formation in Metals
,”
Proc. R. Soc. A
,
476
(
2234
), p.
20190519
.
114.
Mallock
,
A.
,
1882
, “
The Action of Cutting Tools
,”
Proc. R. Soc. London
,
33
(
216–219
), pp.
127
139
.
115.
Udupa
,
A.
,
Viswanathan
,
K.
,
Davis
,
J. M.
,
Saei
,
M.
,
Mann
,
J. B.
, and
Chandrasekar
,
S.
,
2019
, “
A Mechanochemical Route to Cutting Highly Strain-Hardening Metals
,”
Tribol. Lett.
,
67
(
1
), p.
4
. 10.1007/s11249-018-1117-8
116.
Shanley
,
F. R.
,
1946
, “
The Column Paradox
,”
J. Aeronaut. Sci.
,
13
(
12
), p.
678
. 10.2514/8.11478
117.
Shanley
,
F. R.
,
1947
, “
Inelastic Column Theory
,”
J. Aeronaut. Sci.
,
14
(
5
), pp.
261
268
. 10.2514/8.1346
118.
Udupa
,
A.
,
Viswanathan
,
K.
, and
Chandrasekar
,
S.
,
2020
, “
Pattern Formation on Free Surfaces via Plastic Buckling and Periodic Folding
,”
Europhys. Lett.
,
129
(
4
), p.
46001
. 10.1209/0295-5075/129/46001
119.
Udupa
,
A.
,
Viswanathan
,
K.
,
Saei
,
M.
,
Mann
,
J. B.
, and
Chandrasekar
,
S.
,
2018
, “
Material-Independent Mechanochemical Effect in the Deformation of Highly-Strain-Hardening Metals
,”
Phys. Rev. Appl.
,
10
(
1
), p.
014009
. 10.1103/PhysRevApplied.10.014009
120.
Udupa
,
A.
,
Sugihara
,
T.
,
Viswanathan
,
K.
, and
Chandrasekar
,
S.
,
2019
, “
Altering the Stability of Surface Plastic Flow via Mechanochemical Effects
,”
Phys. Rev. Appl.
,
11
(
1
). 10.1103/PhysRevApplied.11.014021
121.
Pugh
,
H. L. D.
,
1958
, “
Mechanics of the Cutting Process
,”
Proceedings of the Conference on Technology of Engineering Manufacture
,
London
, pp.
237
254
.
122.
Hill
,
R.
,
1954
, “
The Mechanics of Machining: A New Approach
,”
J. Mech. Phys. Solids
,
3
(
1
), pp.
47
53
. 10.1016/0022-5096(54)90038-1
123.
Hill
,
R.
,
1954
, “
On the Limits Set by Plastic Yielding to the Intensity of Singularities of Stress
,”
J. Mech. Phys. Solids
,
2
(
4
), pp.
278
285
. 10.1016/0022-5096(54)90018-6
124.
Kudo
,
H.
,
1965
, “
Some New Slip-Line Solutions for Two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
(
1
), pp.
43
55
. 10.1016/0020-7403(65)90084-6
125.
Roth
,
R. N.
,
1975
, “
The Range of Permissible Shear Angles in Orthogonal Machining Allowing for Variable Hydrostatic Stress on the Shear Plane and Variable Friction Angle Along the Rake Face
,”
Int. J. Mach. Tool Des. Res.
,
15
(
3
), pp.
161
177
. 10.1016/0020-7357(75)90018-9
126.
Dewhurst
,
P.
,
1978
, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. A
,
360
(
1703
), pp.
587
610
. 10.1098/rspa.1978.0087
You do not currently have access to this content.