Abstract

New temperature and heat loss charts have been created for one-dimensional, transient conduction. In the new charts, time is scaled by a weighted sum of the lumped capacitance time scale tLC and the diffusion time scale tdiff: tref=atLC+btdiff, where a and b are constants. As the Biot number approaches zero, the diffusion time scale is much smaller than the lumped capacitance time scale (tdifftLC), so the new time scale is equivalent to the lumped capacitance time scale. As the Biot number approaches infinity, the diffusion time scale is much larger than the lumped capacitance time scale (tdifftLC), so the new time scale is equivalent to the diffusion time scale. Using the new time scale, the dimensionless temperature excess and heat loss fraction can be compactly presented in a single plot. The new time scale and associated plots cast new light on some fundamental aspects of the study of conductive heat transfer, and simplify the design process.

References

1.
Bejan
,
A.
,
1993
,
Heat Transfer
,
Wiley
,
New York
.
2.
Chapman
,
A. J.
,
1987
,
Fundamentals of Heat Transfer
,
Macmillan Publishing Company
,
New York
.
3.
Holman
,
J. P.
,
1990
,
Heat Transfer
,
McGraw-Hill Publishing Company
,
New York
.
4.
Incropera
,
F.
, and
DeWitt
,
D.
,
1985
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
5.
Cengel
,
Y. A.
,
2006
,
Heat and Mass Transfer: A Practical Approach
,
McGraw-Hill Companies, Inc
.,
New York
.
6.
Nellis
,
G.
, and
Klein
,
S.
,
2008
,
Heat Transfer
,
Cambridge University Press
,
Cambridge, UK
.
7.
Heisler
,
M. P.
,
1947
, “
Temperature Charts for Induction and Constant-Temperature Heating
,”
Trans. ASME
,
69
, pp.
227
236
.
8.
Gröber
,
H.
,
Erk
,
S.
, and
Grigull
,
U.
,
1961
,
Fundamentals of Heat Transfer
,
McGraw-Hill Company, Inc
.,
New York
.
9.
Luikov
,
A. v.
,
1968
,
Analytical Heat Diffusion Theory
,
Academic Press
,
New York
.
10.
Yovanovich
,
M.
,
1996
, “
Simple Explicit Expressions for Calculation of the Heisler-Gröber Charts
,”
AIAA Paper No. 3968.
11.
Fife
,
P.
,
Klewicki
,
J.
,
McMurtry
,
P.
, and
Wei
,
T.
,
2005
, “
Multiscaling in the Presence of Indeterminacy: Wall-Induced Turbulence
,”
Multiscale Model. Simul.
,
4
(
3
), pp.
936
959
.10.1137/040611173
12.
Fife
,
P.
,
2006
, “
Scaling Approaches to Steady Wall-Induced Turbulence
,” accessed Oct. 6, 2022, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.9524&rep=rep1&type=pdf
13.
Wei
,
T.
,
2020
, “
Analyses of Buoyancy-Driven Convection
,”
Adv. Heat Transfer
,
52
, pp.
1
93
.10.1016/bs.aiht.2020.09.002
14.
Fife
,
P.
,
Klewicki
,
J.
, and
Wei
,
T.
,
2009
, “
Time Averaging in Turbulence Settings May Reveal an Infinite Hierarchy of Length Scales
,”
Discrete Contin. Dyn. Syst.-A
,
24
(
3
), pp.
781
807
.10.3934/dcds.2009.24.781
You do not currently have access to this content.