Abstract

This paper presents the second part of a study in which the leading edge and suction surface of a compressor blade was modified to delay onset of phase change for sCO2 compressors operating near the critical point. Using a first-of-its-kind apparatus for the measurement of sCO2 flow fields, Particle Image Velocimetry (PIV) is used for local flow field measurements of two compressor blade geometries: the modified “biased wedge,” and a conventional constant thickness blade. Utilizing the developed hardware, the feasibility of a simple, laser-based diagnostic for qualitatively measuring liquid phase regions, is also presented. The design of the optical diagnostics rig, a discussion of numerous challenges, and necessary considerations involved in performing optical-based measurements like PIV, in sCO2, are discussed. Velocity field measurements for the modified compressor profile show a much lower suction peak compared to a conventional blade. These results validate numerical results at the tested conditions, where the suction side profile of the biased wedge works to minimize the local pressure gradient.

References

1.
Blanchette
,
L.
,
2016
, “
Investigation of Real Gas Effects on Centrifugal Compressor Analytical Methods for Supercritical CO2 Power Cycles
,”
Master's thesis
,
University of Central Florida
,
Orlando, FL
.https://stars.library.ucf.edu/etd/5296/
2.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
3.
Cooper
,
P.
,
Sloteman
,
D.
,
Graf
,
E.
, and
Vlaming
,
D.
,
1991
, “
Elimination of Cavitation-Related Instabilities and Damage in High-Energy Pump Impellers
,”
8th International Pump Users Symposium
,
A&M University
,
Houston, TX
, pp.
3
19
.https://hdl.handle.net/1969.1/164258
4.
Sloteman
,
D.
, and
Cooper
,
P.
,
1991
, “
Design of High-Energy Pump Impellers to Avoid Cavitation Instabilities and Damage
,”
EPRI Power Plant Pump Symposium
,
Tampa, FL
, June 26.https://www.researchgate.net/post/design_of_high_energy_pump_impellers_to_avoid_cavitation_instabilities_and_demage
5.
Hosangadi
,
A.
,
Weather
,
T.
,
Cepero
,
A.
,
Cooper
,
P.
,
Fernandez
,
E.
, and
Kapat
,
J.
,
2024
, “
Blade Designs for Improved Multi- Phase Performance in SCO2 Compressors: Part I – Design and Numerical Evaluation at Application Relevant Conditions
,”
ASME
Paper No. GT2024-122297.10.1115/GT2024-122297
6.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
New York
.
7.
Valori
,
V.
,
Elsinga
,
G. E.
,
Rohde
,
M.
,
Westerweel
,
J.
, and
van der Hagen
,
T. H. J. J.
,
2019
, “
Particle Image Velocimetry Measurements of a Thermally Convective Supercritical Fluid
,”
Exp. Fluids
,
60
(
9
), p.
143
.10.1007/s00348-019-2789-z
8.
Lance
,
B. W.
,
2018
, “
Flow Distribution Measurements in sCO2
,”
6th International Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Mar. 27–29, Paper No. SAND2018-2311C.https://www.osti.gov/servlets/purl/1499847
9.
Parahovnik
,
A.
,
Park
,
S.
,
Peles
,
Y.
, and
Vasu
,
S.
,
2020
, “
First Demonstration of PIV Measurements in sCO2 Flows Inside Microchannel Near the Critical Point
,”
7th International Supercritical CO2 Power Cycles Symposium
, San Antonio, TX, Mar. 31–Apr. 2, Paper No. 64.https://sco2symposium.com/proceedings2022/064-paper.pdf
10.
Settles
,
G. S.
,
2001
,
Schlieren and Shadowgraph Techniques
,
Springer
,
New York
.
11.
Raffel
,
M.
,
2015
, “
Background-Oriented Schlieren (BOS) Techniques
,”
Experiment Fluids
,
56
, Article No. 60
.10.1007/s00348-015-1927-5
12.
Vinnichenko
,
N. A.
,
Uvarov
,
A. V.
, and
Plaksina
,
Y. Y.
,
2014
, “
Combined Study of Heat Exchange Near the liquid–Gas Interface by Means of Background Oriented Schlieren and Infrared Thermal Imaging
,”
“Exp. Therm. Fluid Sci.
,
59
, pp.
238
245
.10.1016/j.expthermflusci.2013.11.023
13.
Lettieri
,
C.
,
Paxson
,
D.
,
Spakovsky
,
Z.
, and
Bryanston-Cross
,
P.
,
2018
, “
Characterization of Nonequilibrium Condensation of Supercritical Carbon Dioxide in a de Laval Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041701
.10.1115/1.4038082
14.
Richardson
,
J.
,
Wardell
,
R.
,
Fernandez
,
E.
, and
Kapat
,
J.
,
2023
, “
Experimental and Computational Heat Transfer Study of sCO2 Single-Jet Impingement
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041008
.10.1115/1.4063691
15.
Wardell
,
R. J.
,
Richardson
,
J.
,
Otto
,
M.
,
Smith
,
M.
,
Fernandez
,
E.
, and
Kapat
,
J.
,
2023
, “
An Experimental Investigation of Heat Transfer for Supercritical Carbon Dioxide Cooling in a Staggered Pin Fin Array
,”
ASME
Paper No. GT2023-103263.10.1115/GT2023-103263
16.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.10.1088/0957-0233/8/12/005
17.
Jimenez
,
A.
,
Thompson
,
G. L.
,
Matthews
,
M. A.
,
Davis
,
T. A.
,
Crocker
,
K.
,
Lyons
,
J. S.
, and
Trapotsis
,
A.
,
2007
, “
Compatibility of Medical-Grade Polymers With Dense CO2
,”
J. Supercrit. Fluids
,
42
(
3
), pp.
366
372
.10.1016/j.supflu.2007.05.002
18.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
,
Particle-Based Techniques. Springer-Verlag
,
Berlin, Heidelberg, Germany
, pp.
289
290
.
19.
Mortzheim
,
J.
,
Hofer
,
D.
,
Priebe
,
S.
,
McClung
,
A.
,
Moore
,
J. J.
, and
Cich
,
S.
,
2021
, “
Challenges With Measuring Supercritical CO2 Compressor Performance When Approaching the Liquid-Vapor Dome
,”
ASME
Paper No. GT2021-59527.10.1115/GT2021-59527
20.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg
.
21.
Wieneke
,
B.
,
2015
, “
Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
22.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
You do not currently have access to this content.