Abstract

CO2 leakage due to the coexistence of pressure differentials and clearances within the integrated turbine-alternator-compressor (TAC) of the kW-level sCO2 Brayton cycle is a key issue affecting cycle efficiency and long-term stable operation. To analyze the impact of leakage and feedback, this study examined the integrated system of the sCO2 Brayton cycle with leakage feedback and compared the system performance differences between heat pump feedback and direct compression feedback. Thermodynamic models for the Brayton cycle and feedback unit were established, and the effects of varying key parameters were analyzed. A genetic algorithm was employed to further optimize the system. The selection suggestion charts for the feedback unit were obtained. It is recommended to choose a direct compression feedback unit for conditions with a cavity pressure higher than 6.41 MPa, whereas a heat pump feedback unit is recommended for other conditions. The heat pump feedback unit has advantages particularly at high rotational speeds, low leakage factors, and low cavity pressures. The efficiency of the optimized integrated system is improved by up to 12.53%. The net power accounted for only 53.6% of the turbine output power, the main cycle compression power accounted for 32.1%, the TAC losses accounted for 10.7%, and the total compression power of the feedback unit accounted for 3.7%. Ignoring the internal leakage and losses of TAC can overestimate the power generation capacity of the Brayton cycle, resulting in it being only 79% of the ideal case after considering losses and power consumption.

References

1.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple‐Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
2.
Dostál
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, Paper No.
MIT-ANP-TR-100
.http://hdl.handle.net/1721.1/17746
3.
Murray
,
P.
,
Lindsay
,
E.
,
McDowell
,
M.
, and
Huang
,
M.
,
2015
, “
Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study
,” U.S. DOE Office of Nuclear Energy, Science and Technology (NE), Washington, DC, Report No.
RPT-3011934-000
.10.2172/1372347
4.
Luo
,
D.
, and
Huang
,
D.
,
2020
, “
Thermodynamic and Exergoeconomic Investigation of Various SCO2 Brayton Cycles for Next Generation Nuclear Reactors
,”
Energy Convers. Manage.
,
209
, p.
112649
.10.1016/j.enconman.2020.112649
5.
Berthet Couso
,
G.
,
Barraza Vicencio
,
R.
,
Vasquez Padilla
,
R.
,
Soo Too
,
Y. C.
, and
Pye
,
J.
,
2017
, “
Dynamic Model of Supercritical CO2 Brayton Cycles Driven by Concentrated Solar Power
,”
ASME
Paper No. ES2017-3573.10.1115/ES2017-3573
6.
Ruiz-Casanova
,
E.
,
Rubio-Maya
,
C.
,
Pacheco-Ibarra
,
J. J.
,
Ambriz-Díaz
,
V. M.
,
Romero
,
C. E.
, and
Wang
,
X.
,
2020
, “
Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycles for Use With Low-Grade Geothermal Heat Sources
,”
Energy Convers. Manage.
,
216
, p.
112978
.10.1016/j.enconman.2020.112978
7.
Mohagheghi
,
M.
, and
Kapat
,
J.
,
2014
, “
Thermodynamic Optimization of Recuperated S-CO2 Brayton Cycles for Waste Heat Recovery Applications
,”
Proceedings of Fourth International Supercritical CO2 Power Cycles Symposium
, Sept. 9–10, Pittsburgh, PA, pp.
1
13
.https://www.scribd.com/document/331080965/Mohagheghi-Thermodynamic-Optimization-of-Recuperated-S-co2-Brayton-Cycles-for-Waste-Heat-Recovery-Applications
8.
Qi
,
Y.
,
Ma
,
X.
,
Jiang
,
P.
, and
Zhu
,
Y.
,
2024
, “
Review on Heat-to-Power Conversion Technologies for Hypersonic Vehicles
,”
Chin. J. Aeronaut.
,
37
(
5
), pp.
148
179
.10.1016/j.cja.2023.11.002
9.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
10.
Utamura
,
M.
,
Hasuike
,
H.
,
Ogawa
,
K.
,
Yamamoto
,
T.
,
Fukushima
,
T.
,
Watanabe
,
T.
, and
Himeno
,
T.
,
2012
, “
Demonstration of Supercritical CO2 Closed Regenerative Brayton Cycle in a Bench Scale Experiment
,”
ASME
Paper No. GT2012-68697.10.1115/GT2012-68697
11.
Hacks
,
A.
,
Schuster
,
S.
,
Dohmen
,
H. J.
,
Benra
,
F.-K.
, and
Brillert
,
D.
,
2018
, “
Turbomachine Design for Supercritical Carbon Dioxide Within the sCO2-HeRo.eu Project
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p. 121017.10.1115/1.4040861
12.
Hacks
,
A. J.
, and
Brillert
,
D.
,
2022
, “
Turbomachine Operation With Magnetic Bearings in Supercritical Carbon Dioxide Environment
,”
Int. J. Turbomach., Propul. Power
,
7
(
2
), p.
18
.10.3390/ijtpp7020018
13.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Pickard
,
P. S.
, and
Rochau
,
G. E.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA, Report No.
SAND2010-0171
.10.2172/984129
14.
Cho
,
J.
,
Choi
,
M.
,
Baik
,
Y.-J.
,
Lee
,
G.
,
Ra
,
H. S.
,
Kim
,
B.
, and
Kim
,
M.
,
2016
, “
Development of the Turbomachinery for the Supercritical Carbon Dioxide Power Cycle
,”
Int. J. Energy Res.
,
40
(
5
), pp.
587
599
.10.1002/er.3453
15.
Kimball
,
K. J.
, and
Clementoni
,
E. M.
,
2012
, “
Supercritical Carbon Dioxide Brayton Power Cycle Development Overview
,”
ASME
Paper No. GT2012-68204.10.1115/GT2012-68204
16.
De Miol
,
M.
,
Bianchi
,
G.
,
Henry
,
G.
,
Holaind
,
N.
,
Tassou
,
S. A.
, and
Leroux
,
A.
,
2018
, “
Design of a Single-Shaft Compressor, Generator, Turbine for Small-Scale Supercritical CO2 Systems For Waste Heat To Power Conversion Applications
,”
Second European sCO2 Conference
, Essen, Germany, Aug. 30–31, pp.
42
49
.10.17185/duepublico/46086
17.
Muhammad
,
H. A.
,
Lee
,
B.
,
Lee
,
G.
,
Cho
,
J.
, and
Baik
,
Y.-J.
,
2019
, “
Investigation of Leakage Reinjection System for Supercritical CO2 Power Cycle Using Heat Pump
,”
Renewable Energy
,
144
, pp.
97
106
.10.1016/j.renene.2018.10.059
18.
Ertas
,
B.
,
Zierer
,
J.
,
McClung
,
A.
,
Torrey
,
D.
,
Bidkar
,
R. A.
,
Hofer
,
D.
,
Rallabandi
,
V.
,
Singh
,
R.
, and
Zhang
,
X.
,
2023
, “
Super-Critical Carbon Dioxide Power Cycle for Waste Heat Recovery Utilizing Hermetic Oil-Free Turbomachinery: Cycle and Conceptual Turbomachinery Design
,”
ASME
Paper No. GT2023-104245.10.1115/GT2023-104245
19.
Walker
,
M.
,
Fleming
,
D. D.
, and
Pasch
,
J. J.
,
2018
, “
Gas Foil Bearing Coating Behavior in Environments Relevant to S-CO2 Power System Turbomachinery
,”
Sandia National Laboratory (SNL-NM)
,
Albuquerque, NM
.
20.
Ma
,
X.
,
Jiang
,
P.
, and
Zhu
,
Y.
,
2024
, “
Dynamic Simulation and Analysis of Transient Characteristics of a Thermal-to-Electrical Conversion System Based on Supercritical CO2 Brayton Cycle in Hypersonic Vehicles
,”
Appl. Energy
,
359
, p.
122686
.10.1016/j.apenergy.2024.122686
21.
Ma
,
X.
,
Jiang
,
P.
, and
Zhu
,
Y.
,
2023
, “
Modeling and Performance Analysis of a Pre-Cooling and Power Generation System Based on the Supercritical CO2 Brayton Cycle on Turbine-Based Combined Cycle Engines
,”
Energy
,
284
, p.
128540
.10.1016/j.energy.2023.128540
22.
Kármán
,
T. V.
,
1921
, “
Über Laminare Und Turbulente Reibung
,”
ZAMM - J. Appl. Math. Mech
,
1
(
4
), pp.
233
252
.10.1002/zamm.19210010401
23.
Szlaga
,
M.
,
2019
, “
Balancing Axial Force in Centrifugal Pumps With Pump Out Vanes
,”
E3S Web Conf..
,
137
,p.
01028
.10.1051/e3sconf/201913701028
24.
Sun
,
H. H.
,
Hu
,
L.
,
Hanna
,
D. R.
,
Yi
,
J. J.
, and
Curtis
,
E. W.
,
2017
, “
Axial Thrust Loading Mitigation in a Turbocharger
,”
F. G. Technologies
, LLC, Dearborn, MI, No. 20170122339.
25.
Cheng
,
X.
,
Luo
,
J.
,
Xiong
,
B.
, and
Jiang
,
Y.
,
2021
, “
Influence of the Balance Hole Circumferential Position on the Cavitation Performance of the Semiopen Impeller Centrifugal Pump
,”
Math. Probl. Eng.
,
2021
, pp.
1
14
.10.1155/2021/4472433
26.
Castelli
,
N.
,
Bacci
,
T.
,
Picchi
,
A.
,
Winchler
,
L.
, and
Facchini
,
B.
,
2023
, “
Experimental Assessment of Correlative Approaches for the Prediction of Leakage Flow Through Labyrinth Seals
,”
Appl. Sci.
,
13
(
12
), p.
6863
.10.3390/app13126863
27.
Szymanski
,
A.
, and
Dykas
,
S.
,
2019
, “
Evaluation of Leakage Through Labyrinth Seals With Analytical Models
,”
TASK Q.
,
23
(
1
), pp.
61
79
.10.17466/tq2019/23.1/f
28.
Vrancik
,
J. E.
,
1968
, “
Prediction of Windage Power Loss in Alternators
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-4849
.https://ntrs.nasa.gov/api/citations/19680027690/downloads/19680027690.pdf
29.
Rosset
,
K.
, and
Schiffmann
,
J.
,
2020
, “
Extended Windage Loss Models for Gas Bearing Supported Spindles Operated in Dense Gases
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061010
.10.1115/1.4047124
30.
Conboy
,
T. M.
,
2013
, “
Real-Gas Effects in Foil Thrust Bearings Operating in the Turbulent Regime
,”
ASME J. Tribol.
,
135
(
3
), p.
031703
.10.1115/1.4024048
31.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
32.
Pasch
,
J. J.
,
Conboy
,
T. M.
,
Fleming
,
D. D.
, and
Rochau
,
G. E.
,
2012
, “
Supercritical CO2 Recompression Brayton Cycle: Completed Assembly Description
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2012-9546
.https://www.osti.gov/servlets/purl/1057248/
33.
Huang
,
Y.
,
Jiang
,
P.
, and
Zhu
,
Y.
,
2022
, “
Analysis of a Novel Combined Cooling and Power System by Integrating of Supercritical CO2 Brayton Cycle and Transcritical Ejector Refrigeration Cycle
,”
Energy Convers. Manage.
,
269
, p.
116081
.10.1016/j.enconman.2022.116081
34.
Yu
,
S.
,
2014
,
MATLAB Optimization Algorithm Case Analysis and Application
,
Tsinghua University Press
, Beijing, China.
35.
Kim
,
Y. M.
,
Kim
,
C. G.
, and
Favrat
,
D.
,
2012
, “
Transcritical or Supercritical CO2 Cycles Using Both Low- and High-Temperature Heat Sources
,”
Energy
,
43
(
1
), pp.
402
415
.10.1016/j.energy.2012.03.076
36.
Ju
,
F.
,
Fan
,
X.
,
Chen
,
Y.
,
Ouyang
,
H.
,
Kuang
,
A.
,
Ma
,
S.
, and
Wang
,
F.
,
2018
, “
Experiment and Simulation Study on Performances of Heat Pump Water Heater Using Blend of R744/R290
,”
Energy Build.
,
169
, pp.
148
156
.10.1016/j.enbuild.2018.03.063
You do not currently have access to this content.