Abstract

Wiebe functions, analytical equations that estimate the fuel mass fraction burned (MFB) during combustion, have been effective at describing spark-ignition (SI) engine combustion using gasoline fuels. This study explores if the same methodology can be extended for SI combustion with syngas, a gaseous fuel mixture composed of H2, CO, and CO2, and anode-off gas; the latter is an exhaust gas mixture emitted from the anode of a Solid Oxide Fuel Cell, containing H2, CO, H2O, and CO2. For this study, anode off-gas is treated as a syngas fuel diluted with CO2 and vaporized water. Combustion experiments were run on a single-cylinder, research engine using syngas and anode-off gas as fuels. One single Wiebe function and three double Wiebe functions were fitted and compared with the MFB profile calculated from the experimental data. It was determined that the SI combustion process of both the syngas and the anode-off gas could be estimated using a governing Wiebe function. While the detailed double Wiebe function had the highest accuracy, a reduced double Wiebe function is capable of achieving comparable accuracy. On the other hand, a single Wiebe function is not able to fully capture the combustion process of a SI engine using syngas and anode off-gas.

References

1.
Ayala
,
F. A.
,
Gerty
,
M. D.
, and
Heywood
,
J.
,
2006
, “
Effects of Combustion Phasing, Relative Air-Fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency
,”
SAE
Paper No. 2006-01-0229, pp.
177
195
. 10.4271/2006-01-0229
2.
Ayala
,
F. A.
, and
Heywood
,
J. B.
,
2007
, “
Lean SI Engines: The Role of Combustion Variability in Defining Lean Limits
,”
SAE
Paper No. 2007-24-0030. 10.4271/2007-24-0030
3.
Chaichan
,
M.
,
2012
, “
Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines
,”
Tikrit J. Eng. Sci.
,
19
(
1
), pp.
50
61
.10.25130/tjes.19.1.06
4.
Guerra
,
L.
,
Moura
,
K.
,
Rodrigues
,
J.
,
Gomes
,
J.
,
Puna
,
J.
,
Bordado
,
J.
, and
Santos
,
T.
,
2018
, “
Synthesis Gas Production From Water Electrolysis, Using the Electrocracking Concept
,”
J. Environ. Chem. Eng.
,
6
(
1
), pp.
604
609
.10.1016/j.jece.2017.11.033
5.
Raman
,
P.
, and
Ram
,
N. J. E.
,
2013
, “
Performance Analysis of an Internal Combustion Engine Operated on Producer Gas, in Comparison With the Performance of the Natural Gas and Diesel Engines
,”
Energy
,
63
, pp.
317
333
.10.1016/j.energy.2013.10.033
6.
Bauer
,
C.
, and
Forest
,
T.
,
2001
, “
Effect of Hydrogen Addition on the Performance of Methane-Fueled Vehicles. Part I: Effect on SI Engine Performance
,”
Int. J. Hydrogen Energy
,
26
(
1
), pp.
55
70
.10.1016/S0360-3199(00)00067-7
7.
Furuhama
,
S.
,
1983
, “
State of the Art and Future Trends in Hydrogen-Fuelled Engines
,”
Int. J. Veh. Des.
,
4
(
4
), pp.
359
385
.http://worldcat.org/issn/14775360
8.
Karim
,
G.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int.J. Hydrogen Energy
,
28
(
5
), pp.
569
577
.10.1016/S0360-3199(02)00150-7
9.
Sridhar
,
G.
, and
Yarasu
,
R. B.
,
2010
,
Facts About Producer Gas Engine
, Paths to Sustainable Energy, Ng, A., ed.,
INTECH Open Access Publisher
, Greenville, SC.10.5772/13030
10.
Ran
,
Z.
,
Hariharan
,
D.
,
Lawler
,
B.
, and
Mamalis
,
S.
,
2019
, “
Experimental Study of Lean Spark Ignition Combustion Using Gasoline, Ethanol, Natural Gas, and Syngas
,”
Fuel
,
235
, pp.
530
537
.10.1016/j.fuel.2018.08.054
11.
Ran
,
Z.
,
Hariharan
,
D.
,
Lawler
,
B.
, and
Mamalis
,
S.
,
2020
, “
Exploring the Potential of Ethanol, CNG, and Syngas as Fuels for Lean Spark-Ignition combustion-An Experimental Study
,”
Energy
,
191
, p.
116520
.10.1016/j.energy.2019.116520
12.
Mustafi
,
N.
,
Miraglia
,
Y. C.
,
Raine
,
R. R.
,
Bansal
,
P. K.
, and
Elder
,
S. T.
,
2006
, “
Spark-Ignition Engine Performance With ‘Powergas’ Fuel (Mixture of CO/H2): A Comparison With Gasoline and Natural Gas
,”
Fuel
,
85
(
12–13
), pp.
1605
1612
.10.1016/j.fuel.2006.02.017
13.
Bika
,
A. S.
,
Franklin
,
L.
, and
Kittelson
,
D.
,
2011
, “
Engine Knock and Combustion Characteristics of a Spark Ignition Engine Operating With Varying Hydrogen and Carbon Monoxide Proportions
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
5143
5152
.10.1016/j.ijhydene.2011.01.039
14.
Dai
,
X.
,
Ji
,
C.
,
Wang
,
S.
,
Liang
,
C.
,
Liu
,
X.
, and
Ju
,
B.
,
2012
, “
Effect of Syngas Addition on Performance of a Spark-Ignited Gasoline Engine at Lean Conditions
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14624
14631
.10.1016/j.ijhydene.2012.07.039
15.
Shah
,
A.
,
Srinivasan
,
R.
,
Filip To
,
R. D.
, and
Columbus
, E. P.
,
2010
, “
Performance and Emissions of a Spark-Ignited Engine Driven Generator on Biomass Based Syngas
,”
Bioresour. Technol.
,
101
(
12
), pp.
4656
4661
.10.1016/j.biortech.2010.01.049
16.
Longwell
,
J. P.
,
Rubin
,
E. S.
, and
Wilson
,
J.
,
1995
, “
Coal: Energy for the Future
,”
Prog. Energy Combust. Sci.
,
21
(
4
), pp.
269
360
.10.1016/0360-1285(95)00007-0
17.
Bizon
,
N.
, and
Thounthong
,
P.
,
2018
, “
Fuel Economy Using the Global Optimization of the Fuel Cell Hybrid Power Systems
,”
Energy Convers. Manage.
,
173
, pp.
665
678
.10.1016/j.enconman.2018.08.015
18.
Vora
,
S. D.
,
2014
, “
Office of Fossil Energy's Solid Oxide Fuel Cell Program Overview
,”
15th Annual SECA Workshop
, Pittsburgh, PA, July 22–23, pp.
22
23
.
19.
Fyffe
,
J. R.
,
Donohue
,
M. A.
,
Regalbuto
,
M. C.
, and
Edwards
,
C. F.
,
2017
, “
Mixed Combustion–Electrochemical Energy Conversion for High-Efficiency, Transportation-Scale Engines
,”
Int. J. Engine Res.
,
18
(
7
), pp.
701
716
.10.1177/1468087416665936
20.
Kim
,
J.
,
Kim
,
Y.
,
Choi
,
W.
,
Ahn
,
K. Y.
, and
Song
,
H. H.
,
2020
, “
Analysis on the Operating Performance of 5-kW Class Solid Oxide Fuel Cell-Internal Combustion Engine Hybrid System Using Spark-Assisted Ignition
,”
Appl. Energy
,
260
, p.
114231
.10.1016/j.apenergy.2019.114231
21.
Ran
,
Z.
,
Assanis
,
D.
,
Hariharan
,
D.
, and
Mamalis
,
S.
,
2020
, “
Experimental Study of Spark-Ignition Combustion Using the Anode Off-Gas From a Solid Oxide Fuel Cell
,”
SAE
Paper No. 2020-01-0351. 10.4271/2020-01-0351
22.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
,
New York
.
23.
Heywood
,
J. B.
,
Higgins
,
J. M.
,
Watts
,
P. A.
, and
Tabaczynski
,
R. J.
,
1979
, “
Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions
,”
SAE
Paper No. 790291.10.4271/790291
24.
Borg
,
J. M.
, and
Alkidas
,
A. C.
,
2008
, “
Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions
,”
SAE
Paper No. 2008-01-1088.10.4271/2008-01-1088
25.
Shivapuji
,
A. M.
, and
Dasappa
,
S.
,
2013
, “
Experiments and Zero D Modeling Studies Using Specific Wiebe Coefficients for Producer Gas as Fuel in Spark-Ignited Engines
,”
Archive Proc. Inst. Mech. Eng., Part C
,
227
(
3
), pp.
504
519
.10.1177/0954406212463846
26.
Carrera
,
J.
,
Riesco-Ávila
,
J. M.
,
Martinez-Martinez
,
S.
,
Sánchez-Cruz
,
F. A.
, and
Gallegos-Muñoz
,
A.
,
2013
, “
Numerical Study on the Combustion Process of a Biogas Spark-Ignition Engine
,”
Them. Sci.
,
17
(
1
), pp.
241
254
.10.2298/TSCI111115152C
27.
Ghojel
,
J. I.
,
1982
, “
A Study of Combustion Chamber Arrangements and Heat Release in DI Diesel Engines
,”
SAE
Paper No. 821034.
28.
Yasar
,
H.
,
Soyhan
,
H. S.
,
Walmsley
,
H.
,
Head
,
B.
, and
Sorusbay
,
C.
,
2008
, “
Double-Wiebe Function: An Approach for Single-Zone HCCI Engine Modeling
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1284
1290
.10.1016/j.applthermaleng.2007.10.014
29.
Aziz
,
A. R. A.
, and
Heikal
,
M.
,
2013
, “
Double Stage Wiebe: An Approach to Single Zone Modeling of Dual Fuel HCCI Combustion
,”
Asian J. Sci. Res.
,
6
(
2
), pp.
388
394
.10.3923/ajsr.2013.388.394
30.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D. J.
, and
Naber
,
J. D.
,
2011
, “
Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine Over Variable Compression Ratios and EGR Levels
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2213
2220
.10.1016/j.applthermaleng.2011.01.040
31.
Liu
,
J.
, and
Dumitrescu
,
C.
,
2019
, “
Single and Double Wiebe Function Combustion Model for a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition
,”
Appl. Energy
,
248
, pp.
95
103
.10.1016/j.apenergy.2019.04.098
32.
Ran
,
Z.
,
Longtin
,
J.
, and
Assanis
,
D.
, “
Investigating Anode Off-Gas Under Spark-Ignition Combustion for SOFC-ICE Hybrid Systems
,”
Int. J. Engine Res.
,
23
(
5
), pp.
830
845
.10.1177/14680874211016987
33.
AVL BOOST
,
2013
, Theory version 2013.2, AVL LIST GmbH, Graz, Austria.
You do not currently have access to this content.