This paper present the development of an oil-free turbocharger (TC) supported on gas foil bearings (GFBs) and its performance evaluation in a test rig driven by a diesel vehicle engine (EG). The rotor-bearing system was designed via a rotordynamic analysis with dynamic force coefficients derived from the analysis of the GFBs. The developed oil-free TC was designed using a hollow rotor with a radial turbine at one end and a compressor wheel at the other end, a center housing with journal and thrust GFBs, and turbine and compressor casings. Preliminary tests driven by pressurized shop air at room temperature demonstrated relatively stable operation up to a TC speed of 90,000 rpm, accompanied by a dominant synchronous motion of ∼20 μm and small subsynchronous motions of less than 2 μm at the higher end of the speed range. Under realistic operating conditions with a diesel vehicle engine at a maximum TC speed of 136,000 rpm and a maximum EG speed of 3140 rpm, EG and TC speeds and gas flow properties were measured. The measured time responses of the TC speed and the turbine inlet pressure demonstrated time delays of ∼3.9 and ∼1.3 s from that of the EG speed during consecutive stepwise EG speed changes, implying the GFB friction and rotor inertia led to time delays of ∼2.6 s. The measured pressures and temperatures showed trends following second-order polynomials against EG speed. Regarding TC efficiency, 4.3 kW of mechanical power was supplied by the turbine and 3.3 kW was consumed by the compressor at the top speed of 136,000 rpm, and the power loss reached 22% of the turbine power. Furthermore, the estimated GFB power losses from the GFB analysis were approximately 25% of the total power loss at higher speeds, indicating the remainder of the power loss resulted from heat transfer from the exhaust gas to the surrounding solid structures. Incidentally, as the TC speed was increased from 45,000 to 136,000 rpm, the estimated turbine inlet power increased from 19 to 79 kW, the compressor exit power increased from 7 to 26 kW, and the TC output mass flow rate from the compressor increased from 21 to 74 g/s. The average TC compressor exit power was estimated at ∼34% of the turbine inlet power over this range.
Skip Nav Destination
e-mail: lyb@kist.re.kr
e-mail: djpark@kist.re.kr
e-mail: thk@kist.re.kr
e-mail: khsim@kist.re.kr
Article navigation
March 2012
Research Papers
Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings
Yong-Bok Lee,
e-mail: lyb@kist.re.kr
Yong-Bok Lee
Principal Research Scientist
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
Search for other works by this author on:
Dong-Jin Park,
e-mail: djpark@kist.re.kr
Dong-Jin Park
Research Associate
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
Search for other works by this author on:
Tae Ho Kim,
e-mail: thk@kist.re.kr
Tae Ho Kim
Senior Research Scientist
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
Search for other works by this author on:
Kyuho Sim
e-mail: khsim@kist.re.kr
Kyuho Sim
Postdoctoral Research Associate
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
Search for other works by this author on:
Yong-Bok Lee
Principal Research Scientist
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
e-mail: lyb@kist.re.kr
Dong-Jin Park
Research Associate
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
e-mail: djpark@kist.re.kr
Tae Ho Kim
Senior Research Scientist
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
e-mail: thk@kist.re.kr
Kyuho Sim
Postdoctoral Research Associate
Korea Institute of Science and Technology,
Energy Mechanics Center, Seoul, Republic of Korea
e-mail: khsim@kist.re.kr
J. Eng. Gas Turbines Power. Mar 2012, 134(3): 032506 (11 pages)
Published Online: January 4, 2012
Article history
Received:
March 31, 2011
Revised:
July 18, 2011
Online:
January 4, 2012
Published:
January 4, 2012
Citation
Lee, Y., Park, D., Kim, T. H., and Sim, K. (January 4, 2012). "Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings." ASME. J. Eng. Gas Turbines Power. March 2012; 134(3): 032506. https://doi.org/10.1115/1.4004719
Download citation file:
Get Email Alerts
Burner and Flame Transfer Matrices of Jet Stabilized Flames: Influence of Jet Velocity and Fuel Properties
J. Eng. Gas Turbines Power
Towards Low NOx Emissions Performance of A 65KW Recuperated Gas Turbine Operated on 100% Hydrogen
J. Eng. Gas Turbines Power
A Large Eddy Simulation Study on Hydrogen Microjets in Hot Vitiated Crossflow
J. Eng. Gas Turbines Power
Related Articles
Feasibility Study of an Oil-Free Turbocharger Supported on Gas Foil Bearings Via On-Road Tests of a Two-Liter Class Diesel Vehicle
J. Eng. Gas Turbines Power (May,2013)
Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and
Comparisons to Test Data
J. Eng. Gas Turbines Power (April,2007)
Rotordynamic Performance of Shimmed Gas Foil Bearings for Oil-Free Turbochargers
J. Tribol (July,2012)
Operation of a Mesoscopic Gas Turbine Simulator at Speeds in Excess of 700,000 rpm on Foil Bearings
J. Eng. Gas Turbines Power (January,2007)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Threshold Functions
Closed-Cycle Gas Turbines: Operating Experience and Future Potential