Abstract

The performance of Stirling engines is subject to limitations resulting from power dissipation in the regenerator. The dissipation is caused by pressure gradients in the regenerator required to generate flow. Without this flow the power output would be zero. Hence the dissipation is an essential element of the operation of the engine. Using linearized theory, the pressure in the compression and expansion spaces is found as a function of the ratio of piston amplitudes and piston phase difference. The regenerator is taken to be thermally perfect. All variations are taken to be sinusoidal in time. Expressions are derived for the dimensionless power output and the thermal efficiency at a given amplitude of the compression piston. Upper bounds on the power output and the efficiency are found as function of frequency and of regenerator void volume. Special attention is given to the case of piston amplitude ratio equal to 1.

References

1.
Hargreaves
,
C. M.
, 1991,
The Philips Stirling Engine
,
Elsevier Science Publishers
, Amsterdam.
2.
Schmidt
,
G.
, 1871, “
Theorie der Lehrmanschen Calorischen Maschine
,”
Z. Ver. Dtsch. Ing.
,
15
(
1
), pp.
1
12
;
Schmidt
,
G.
, 1871, “
Theorie der Lehrmanschen Calorischen Maschine
,”
Z. Ver. Dtsch. Ing.
,
15
(
2
), pp.
97
112
.
3.
Finkelstein
,
T.
, 1960, “
Generalized Thermodynamic Analysis of Stirling Engines
,” SAE paper 118 B. See also (10), Appendix VIII.
4.
Reader
,
G. T.
, and
Hooper
,
C.
, 1983,
Stirling Engines, E. & F.N.Spon
,
London
, Appendix A.
5.
Walker
,
G.
, 1980,
Stirling Engines
,
Clarendon
, Oxford.
6.
Organ
,
A. J.
, 1997,
The Regenerator and the Stirling Engine
,
Mechanical Engineering Publications Limited
, London.
7.
Urieli
,
I.
, and
Berchowitz
,
D. M.
, 1984,
Stirling Cycle Analysis
,
Adam Hilger Ltd.
, Bristol.
8.
Walker
,
G.
, and
Senft
,
J. R.
, 1985,
Free Piston Stirling Engines
,
Springer-Verlag
, Berlin.
9.
West
,
C. D.
, 1986,
Principles and Applications of Stirling Engines
,
Van Nostrand Reinhold
, New York.
10.
Organ
,
A. J.
, 1992,
Thermodynamics and Gas Dynamics of the Stirling Cycle Machine
,
Cambridge University Press
, Cambridge, UK.
11.
Senft
,
J. R.
, 1993,
Ringborn Stirling Engines
,
Oxford University Press
, Oxford.
12.
Finkelstein
,
T.
, and
Organ
,
A. J.
, 2001,
Air Engines, the History, Science and Reality of the Perfect Engine
,
ASME
, New York.
13.
Hausen
,
H.
, 1983,
Heat Transfer in Counterflow, Parallel Flow and Cross Flow
,
MacGraw-Hill
, New York.
14.
Schmidt
,
F. W.
, and
Willmott
,
A. J.
, 1981,
Thermal Energy Storage and Regeneration
,
Hemisphere
, Washington, DC.
15.
Ackermann
,
R. A.
, 1997,
Cryogenic Regenerative Heat Exchangers
,
Plenum
, New York.
16.
Swift
,
G. W.
, 1988, “
Thermoacoustic Engines
,”
Cryogenics
0011-2275,
84
(
4
), pp.
1145
1179
.
17.
Xiao
,
J. H.
, 1992, “
Thermoacoustic Theory for Cyclic Flow Regenerators. Part I: Fundamentals
,”
Cryogenics
0011-2275,
32
(
10
), pp.
895
901
.
18.
Xiao
,
J. H.
, 1995, “
Thermoacoustic Heat Transport and Energy Transformation. Part I: Formulation of the Problem
,”
Cryogenics
0011-2275,
35
(
1
), pp.
15
19
.
19.
Roach
,
P. R.
,
Kashani
,
A.
, and
Lee
,
J. M.
, 1996, “
Theoretical Analysis of a Pulse Tube Regenerator
,”
Advances in Cryogenic Engineering
,
41
,
P.
Kittel
, ed.,
Plenum
, New York, pp.
1357
1363
.
20.
Bauwens
,
L.
, 1998, “
Interface Loss in the Small Amplitude Orifice Pulse Tube Model
,”
Advances in Cryogenic Engineering
43B
,
P.
Kittel
, ed.,
Plenum
, New York, pp.
1933
1940
.
21.
de Waele
,
A. T. A. M.
,
Hooijkaas
,
H. W. G.
,
Steijaart
,
P. P.
, and
Benschop
,
A. A. J.
, 1998, “
Regenerator Dynamics in the Harmonic Approximation
,”
Cryogenics
0011-2275,
38
(
4
), pp.
995
1006
.
22.
Mayzus
,
P.
,
Fang
,
L.
,
Deng
,
X.
, and
Bauwens
,
L.
, 2002, “
Pressure Gradients in Oscillating Flows in Regenerators—Analysis and Application to Pulse-Tube Refrigerators
,”
AIP Conf. Proc.
0094-243X,
613
, pp.
969
976
.
23.
Mayzus
,
P.
,
Fang
,
L.
,
Deng
,
X.
,
Fauvel
,
O. R.
, and
Bauwens
,
L.
, 2002, “
Pressure gradients in the Regenerator and Overall Pulse-Tube and Refrigerator Performance
,”
AIAA J.
0001-1452,
40
(
9
), pp.
1897
1906
.
24.
de Boer
,
P. C. T.
, 2003, “
Maximum Attainable Performance of Stirling Engines and Refrigerators
,”
ASME J. Heat Transfer
0022-1481,
125
(
5
), pp.
911
915
.
25.
de Boer
,
P. C. T.
, 2003, “
Characteristics of the Double Inlet Pulse Tube
,”
Cryogenics
0011-2275,
43
, pp.
379
391
.
26.
de Boer
,
P. C. T.
, 2002, “
Maximum Attainable Performance of Pulse Tube Refrigerators
,”
Cryogenics
0011-2275
42
, pp.
123
125
.
27.
Watson
,
G. N.
, 1966,
A Treatise on the Theory of Bessel Functions
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.