This paper describes the development of a comprehensive mathematical and numerical model for simulating the performance of automotive three-way catalytic converters, which are employed to reduce engine exhaust emissions. The model simulates the emission system behavior by using an exhaust system heat conservation and catalyst chemical kinetic submodel. The resulting governing equations are solved numerically. Good agreements were found between the numerical predictions and experimental measurements under both steady-state and transient conditions. The developed model will be used to facilitate the converter design improvement efforts, which are necessary in order to meet the increasingly stricter emission requirements.
Issue Section:
Internal Combustion Engines
1.
Federal Register, 1968, Vol. 33, No. 108.
2.
U.S. Revised Clean Air Act of 1994.
3.
Moore, W. R., and Mondt, J. R., 1993, “Predicted Cold Start Emission Reductions Resulting From Exhaust Thermal Energy Conservation to Quicken Catalytic Converter Lightoff,” SAE Paper No. 931087.
4.
Chen, D. K. S., 1993, “A Numerical Model for Thermal Problem in Exhaust Systems,” Vehicle Thermal Management Systems Conference, Columbus, OH, Mar. 29–Apr. 1.
5.
Wendland, D. W., 1993, “Automobile Exhaust-System Steady-State Heat Transfer,” SAE Paper No. 931085.
6.
Lai
, M. C.
, Lee
, T.
, Kim
, J. Y.
, Li
, P.
, Chui
, G.
, and Pakko
, J. D.
, 1992
, “Numerical and Experimental Characterization of Automotive Catalytic Converter Internal Flows
,” J. Fluids Struct.
, 6
, pp. 451
–470
.7.
Baxendale, A. J., 1993, “The Role of Computational Fluid Dynamics in Exhaust System Design and Development,” SAE Paper No. 931072.
8.
Lloyd-Thomas, D. G., Ashworth, R., and Qiao, J., 1993, “Meeting Heat Flow Challenges in Automotive Catalyst Design with CFD,” SAE Paper No. 931079.
9.
Young
, L. C.
, and Finlayson
, B. A.
, 1976
, “Mathematical Models of the Monolithic Catalytic Converter, Part 1, Development of Model and Application of Orthogonal Collocation
,” AIChE J.
, 22
, pp. 331
–343
.10.
Young
, L. C.
, and Finlayson
, B. A.
, 1976
, “Mathematical Models of the Monolithic Catalytic Converter, Part 2, Application to Automobile Exhaust
,” AIChE J.
, 22
, pp. 343
–353
.11.
Otto, N. C., and LeGray, W. J., 1980, “Mathematical Models for Catalytic Converter Performance,” SAE Paper No. 800841.
12.
Oh, S., 1988, “Thermal Response of Monolithic Catalytic Converters During Sustained Engine Misfiring: A Computational Study,” SAE Paper No. 881591.
13.
Montreuil, C. N., Williams, S. C., and Adamczyk, A. A., 1992, “Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization—Steady State Kinetics,” SAE Paper No. 920096.
14.
Pattas, K. N., Stamatelos, A. M., Pistikopoulos, P. K., Koltsakis, G. C., Konstantinidis, P. A., Volpi, E., and Leveroni, E., 1994, “Transient Modeling of 3-Way Catalytic Converters,” SAE Transactions, Paper No. 940934.
15.
Siemund
, S.
, Leclerc
, P.
, Schweich
, D. J.
, Prigent
, M.
, and Castagna
, F.
, 1996
, “Three-Way Monolithic Converter: Simulations Versus Experiments
,” Chem. Eng. Sci.
, 51
, pp. 3709
–3720
.16.
Koltsakis
, G. C.
, Konstantinidis
, P. A.
, and Stamatelos
, A. M.
, 1997
, “Development and Application Range of Mathematical Models for 3-Way Catalytic Converters
,” Appl. Catal., B
, 12
, pp. 161
–191
.17.
Koltsakis
, G. C.
, Kandylas
, I. P.
, and Stamatelos
, A. M.
, 1998
, “Three-Way Catalytic Converter Modeling and Applications
,” Chem. Eng. Commun.
, 164
, pp. 153
–189
.18.
Oh
, S. H.
, and Cavendish
, J. C.
, 1985
, “Mathematical Modeling of Catalytic Converter Lightoff—Part 2: Model Verification by Engine-Dynamometer Experiments
,” AIChE J.
, 31
, pp. 935
–942
.19.
Oh
, S. H.
, and Cavendish
, J. C.
, 1985
, “Mathematical Modeling of Catalytic Converter Lightoff—Part 3: Prediction of Vehicle Exhaust Emissions and Parametric Analysis
,” AIChE J.
, 31
, pp. 943
–947
.20.
Voltz
, S. E.
, Morgan
, C. R.
, Liederman
, D.
, and Jacob
, S. M.
, 1973
, “Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts
,” Ind. Eng. Chem. Prod. Res. Dev.
, 12
, pp. 294
–301
.21.
Kuo, T. C., Morgan, C. R., and Lassen, H. C., 1971, “Mathematical Modeling of CO and HC Catalytic Converter Systems,” SAE Paper No. 710289.
22.
Otto, N. C., 1984, private communication.
23.
Li, P., Adamczyk, A. A., and Pakko, J. D., 1994, “Thermal Management of Automotive Emission Systems: Reducing the Environmental Impact,” The Japan-U.S. Seminar on Thermal Engineering for Global Environment Protection (A-3).
24.
Koltsakis
, G. C.
, and Stamatelos
, A. M.
, 1997
, “Catalytic Automotive Exhaust Aftertreatment
,” Prog. Energy Combust. Sci.
, 23
, pp. 1
–39
.25.
Gandhi
, H. S.
, Piken
, A. G.
, Shelef
, M.
, and Delosh
, R. G.
, 1976
, “Laboratory Evaluation of Three-Way Catalysts
,” SAE Trans.
, 85
, pp. 201
–212
.26.
Shamim, T., Medisetty, V. S., and Shen, H., 2000, “Dynamic Response of Catalytic Converters Subjected to Changes in Air-Fuel Ratio,” Proceedings of the 2000 Technical Meeting of the Central States Section of the Combustion Institute, Combution Insitute, Pittsburgh, PA, pp. 389–394.
You do not currently have access to this content.