Abstract

A pitot-tube jet-pump (PTJ pump) has been considerably modified and extended in order to continuously separate and transport liquids of different densities. As a first application, an oil–water mixture is considered in this work. The modified PTJ pump could be used as a primary separator for oil-polluted water (e.g., around off-shore platforms, after oil spills from ships), while additionally being able to transport the resulting fluid to further heaters, exchangers, centrifuges, distillation columns, etc., without necessitating additional machinery. The performance behavior of the separating PTJ pump (abbreviated SPP in what follows) has been first investigated with computational fluid dynamics (CFD), and then validated by comparison with experimental data acquired on a small-scale prototype. Based on these observations, a design tool has been developed to (i) predict performance and (ii) support proper device scaling. This tool is based on dimensionless parameters that are already employed for classical turbomachinery, similar to the Cordier chart. However, since the SPP works at an extremely low specific speed, its operating points lie outside the standard Cordier chart. To verify the accuracy of the design tool, a scale-up test has been conducted and validated by CFD, delivering a good agreement. A separation efficiency better than 99% has been obtained in the experiments for suitable operation conditions, while the numerical scale-up test reveals a head of 15.1 m and an oil content below 0.2% in the purified water at the high-pressure outlet.

References

1.
Oslo and Paris Commissions (OSPAR)
,
2013
,“
Ospar Report on Discharges, Spills and Emissions From Offshore Oil and Gas Installations
,” OSPAR Commission, London, UK.
2.
Clark
,
R. B.
,
1992
,
Kranke Meere? Verschmutzung Und Ihre Folgen
,
Spektrum
,
Heidelberg, Germany
.
3.
Jaworski
,
A. J.
, and
Meng
,
G.
,
2009
, “
On-Line Measurement of Separation Dynamics in Primary Gas/Oil/Water Separators: Challenges and Technical Solutions—A Review
,”
J. Pet. Sci. Eng.
,
68
(
1–2
), pp.
47
59
.10.1016/j.petrol.2009.06.007
4.
Zeevalkink
,
J. A.
, and
Brunsmann
,
J. J.
,
1983
, “
Oil Removal From Water in Parallel Plate Gravity Type Separators
,”
Water Res.
,
17
(
4
), pp.
365
373
.10.1016/0043-1354(83)90131-8
5.
Khan
,
J. A.
,
Al-Kayiem
,
H. H.
,
Aleem
,
W.
, and
Saad
,
A. B.
,
2019
, “
Influence of Alkali-Surfactant Polymer Flooding on the Coalescence and Sedimentation of Oil/Water Emulsion in Gravity Separation
,”
J. Pet. Sci. Eng.
,
173
, pp.
640
649
.10.1016/j.petrol.2018.10.055
6.
Han
,
Y.
,
He
,
L.
,
Luo
,
X.
,
,
Y.
,
Shi
,
K.
,
Chen
,
J.
, and
Huang
,
X.
,
2017
, “
A Review of the Recent Advances in Design of Corrugated Plate Packs Applied for Oil-Water Separation
,”
J. Ind. Eng. Chem.
,
53
, pp.
37
50
.10.1016/j.jiec.2017.04.029
7.
Shah
,
M. T.
,
Parmar
,
H. B.
,
Rhyne
,
L. D.
,
Kalli
,
C.
,
Utikar
,
R. P.
, and
Pareek
,
V. K.
,
2019
, “
A Novel Settling Tank for Produced Water Treatment: CFD Simulations and PIV Experiments
,”
J. Pet. Sci. Eng.
,
182
, p.
106352
.10.1016/j.petrol.2019.106352
8.
Tarpagkou
,
R.
, and
Pantokratoras
,
A.
,
2014
, “
The Influence of Lamellar Settler in Sedimentation Tanks for Potable Water Treatment – A Computational Fluid Dynamic Study
,”
Powder Technol.
,
268
, pp.
139
149
.10.1016/j.powtec.2014.08.030
9.
Wu
,
K.
,
Liu
,
G. F.
, and
Weng
,
J.-S.
,
2016
, “
Numerical Simulation and Experimental Study on Pressure Drop of Radial Jet Cyclone
,”
Sep. Purif. Technol.
,
166
, pp.
9
15
.10.1016/j.seppur.2016.04.015
10.
Huang
,
A.-N.
,
Maeda
,
N.
,
Shibata
,
D.
,
Fukasawa
,
T.
,
Yoshida
,
H.
,
Kuo
,
H.-P.
, and
Fukui
,
K.
,
2017
, “
Influence of a Laminarizer at the Inlet on the Classification Performance of a Cyclone Separator
,”
Sep. Purif. Technol.
,
174
, pp.
408
416
.10.1016/j.seppur.2016.09.053
11.
Xu
,
M.
,
Yang
,
L.
,
Sun
,
X.
,
Wang
,
J.
, and
Gong
,
L.
,
2019
, “
Numerical Analysis of Flow Resistance Reduction Methods in Cyclone Separator
,”
J. Taiwan Inst. Chem. Eng.
,
96
, pp.
419
430
.10.1016/j.jtice.2018.12.011
12.
Movafaghian
,
S.
,
Jaua-Marturet
,
J.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
2000
, “
The Effects of Geometry, Fluid Properties and Pressure on the Hydrodynamics of Gas-Liquid Cylindrical Cyclone Separators
,”
Int. J. Multiphase Flow
,
26
(
6
), pp.
999
1018
.10.1016/S0301-9322(99)00076-2
13.
Vakamalla
,
T. R.
, and
Mangadoddy
,
N.
,
2017
, “
Numerical Simulation of Industrial Hydrocyclones Performance: Role of Turbulence Modelling
,”
Sep. Purif. Technol.
,
176
, pp.
23
39
.10.1016/j.seppur.2016.11.049
14.
Fan
,
Y.
,
Wang
,
J.
,
Bai
,
Z.
,
Wang
,
J.
, and
Wang
,
H.
,
2015
, “
Experimental Investigation of Various Inlet Section Angles in Mini-Hydrocyclones Using Particle Imaging Velocimetry
,”
Sep. Purif. Technol.
,
149
, pp.
156
164
.10.1016/j.seppur.2015.04.047
15.
de Souza
,
F. J.
,
de Vasconcelos Salvo
,
R.
, and
de Moro Martins
,
D.
,
2015
, “
Effects of the Gas Outlet Duct Length and Shape on the Performance of Cyclone Separators
,”
Sep. Purif. Technol.
,
142
, pp.
90
100
.10.1016/j.seppur.2014.12.008
16.
Zhang
,
Y.
,
Liu
,
P.
,
Jiang
,
L.
, and
Yang
,
X.
,
2018
, “
The Study on Numerical Simulation and Experiments of Four Product Hydrocyclone With Double Vortex Finders
,”
Minerals
,
9
(
1
), p.
23
.10.3390/min9010023
17.
Elsayed
,
K.
,
2015
, “
Design of a Novel Gas Cyclone Vortex Finder Using the Adjoint Method
,”
Sep. Purif. Technol.
,
142
, pp.
274
286
.10.1016/j.seppur.2015.01.010
18.
Ji
,
L.
,
Kuang
,
S.
,
Qi
,
Z.
,
Wang
,
Y.
,
Chen
,
J.
, and
Yu
,
A.
,
2017
, “
Computational Analysis and Optimization of Hydrocyclone Size to Mitigate Adverse Effect of Particle Density
,”
Sep. Purif. Technol.
,
174
, pp.
251
263
.10.1016/j.seppur.2016.10.034
19.
Yamamoto
,
T.
,
Oshikawa
,
T.
,
Yoshida
,
H.
, and
Fukui
,
K.
,
2016
, “
Improvement of Particle Separation Performance by New Type Hydro Cyclone
,”
Sep. Purif. Technol.
,
158
, pp.
223
229
.10.1016/j.seppur.2015.12.020
20.
Vakamalla
,
T. R.
,
Koruprolu
,
V. B. R.
,
Arugonda
,
R.
, and
Mangadoddy
,
N.
,
2017
, “
Development of Novel Hydrocyclone Designs for Improved Fines Classification Using Multiphase CFD Model
,”
Sep. Purif. Technol.
,
175
, pp.
481
497
.10.1016/j.seppur.2016.10.026
21.
Li
,
Q.
,
Xu
,
W.
,
Wang
,
J.
, and
Jin
,
Y.
,
2015
, “
Performance Evaluation of a New Cyclone Separator – Part I Experimental Results
,”
Sep. Purif. Technol.
,
141
, pp.
53
58
.10.1016/j.seppur.2014.10.030
22.
Xu
,
W.
,
Li
,
Q.
,
Wang
,
J.
, and
Jin
,
Y.
,
2016
, “
Performance Evaluation of a New Cyclone Separator – Part II Simulation Results
,”
Sep. Purif. Technol.
,
160
, pp.
112
116
.10.1016/j.seppur.2016.01.012
23.
Noroozi
,
S.
, and
Hashemabadi
,
S. H.
,
2009
, “
CFD Simulation of Inlet Design Effect on Deoiling Hydrocyclone Separation Efficiency
,”
Chem. Eng. Technol.
,
32
(
12
), pp.
1885
1893
.10.1002/ceat.200900129
24.
Zhao
,
Z.
,
2011
, “
The Influence of Structural Changes on the Interior Flow Field's Characteristics of Disc Separator
,”
Procedia Eng.
,
15
, pp.
5051
5055
.10.1016/j.proeng.2011.08.938
25.
Konrath
,
M.
,
Brenner
,
A.-K.
,
Dillner
,
E.
, and
Nirschl
,
H.
,
2015
, “
Centrifugal Classification of Ultrafine Particles: Influence of Suspension Properties and Operating Parameters on Classification Sharpness
,”
Sep. Purif. Technol.
,
156
(
Part 1
), pp.
61
70
.10.1016/j.seppur.2015.06.015
26.
Creutz
,
M.
, and
Mewes
,
D.
,
1999
, “
A Novel Centrifugal Gas-Liquid Separator for Catching Intermittent Flows
,”
Int. J. Multiphase Flow
,
24
(
7
), pp.
1057
1087
.10.1016/S0301-9322(98)00018-4
27.
Gruselle
,
F.
,
Steimes
,
J.
, and
Hendrick
,
P.
,
2011
, “
Study of Two-Phase Flow Pump and Separator System
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
062401
.10.1115/1.4002470
28.
Gülich
,
J. F.
,
2010
,
Kreiselpumpen: Handbuch Für Entwicklung, Anlagenplanung Und Betrieb
,
Springer
,
Berlin, Germany
.
29.
Osborn
,
S.
,
1996
, “
The Roto-Jet Pump: 25 Years New
,” World Pumps,
363
, pp.
32
36
.
30.
Meyer
,
J.
, and
Thévenin
,
D.
,
2014
3D CFD Calculations for a Pitot-Tube Jet Pump and Experimental Validation
,”
Proceedings 15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-15)
, Honolulu, HI, Feb. 24–28, pp.
24
28
.
31.
Meyer
,
J.
,
Daróczy
,
L.
, and
Thévenin
,
D.
,
2014
, “
New Design Approach for Pitot-Tube Jet Pump
,”
ASME
Paper No. GT2014-25310.10.1115/GT2014-25310
32.
Meyer
,
J.
,
Daróczy
,
L.
, and
Thévenin
,
D.
,
2017
, “
Shape Optimization of the Pick-Up Tube in a Pitot-Tube Jet Pump
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021103
.10.1115/1.4034455
33.
Bohl
,
W.
, and
Elmendorf
,
W.
,
2013
,
Strömungsmaschinen 1: Aufbau Und Wirkungsweise
,
Vogel
,
Würzburg, Germany
.
34.
Sigloch
,
H.
,
2006
,
Strömungsmaschinen: Grundlagen Und Anwendungen
,
Hanser
,
München, Germany
.
35.
Slot
,
J. J.
,
2013
, “
Development of a Centrifugal In-Line Separator for Oil-Water Flows
,” Ph.D. thesis,
University of Twente
,
The Netherlands
.
36.
Meyer
,
J.
,
Hagemeier
,
T.
,
Abdelsamie
,
A.
, and
Thévenin
,
D.
,
2013
, “
CFD Modeling of Gravity-Induced Separation for Dispersed Oil-Water Emulsions
,”
Proceedings of Eighth International Conference on Multiphase Flow
, Jeju, South Korea, May 26-31, pp.
1
8
.
37.
Liu
,
H.-F.
,
Xu
,
J.-Y.
,
Zhang
,
J.
,
Sun
,
H.-Q.
,
Zhang
,
J.
, and
Wu
,
Y.-X.
,
2012
, “
Oil/Water Separation in a Liquid-Liquid Cylindrical Cyclone
,”
J. Hydrodyn.
,
24
(
1
), pp.
116
123
.10.1016/S1001-6058(11)60225-4
You do not currently have access to this content.