Experimental observations of towed sonar arrays as characterized by long thin circular cylinders indicate transverse motions that are clearly identified by low-amplitudes, low-wavelengths, and low-frequencies. Although the cylinder length (L) to radius (a) is commonly large [L/a = O(103)] with high Reynolds numbers [O(104)], the corresponding length scale involving the average skin friction [CfL/a = O(10)] remains within the many experimental determinations of short to moderate length cylinders that experience oscillatory instabilities. Prior to the present investigation, any detrimental effects of these oscillatory instabilities on the thin cylinder flow physics that serve construction of the respective semi-empirical and semi-analytical models remained chiefly unknown. Herein, we began examining those turbulent statistics via fine-scale numerical simulations to critique the pragmatic adequacy of the representative design models. We were concerned in particular about the streamwise effects on the turbulent boundary layer (TBL), skin friction and wall pressure evolutions as well as the radial distributions of the leading normal and shear Reynolds stresses. Fortunately, no major deviations (within 10%) were discovered in the TBL statistics over a characteristic range of Reynolds numbers and TBL thicknesses as compared to the axisymmetric state. However, acute spikes (both subharmonics and harmonics) were detected in the wall pressure autospectra similar to that suspected in the towed cylinder experiments, which were conducted in large tow tanks and lake-type basins. These spikes are of paramount importance and should be explored further because they may lead to signal-to-noise ratios above acceptable limits.

References

1.
Païdoussis
,
M. P.
,
1966
, “
Dynamics of Flexible Slender Cylinders in Axial Flow—Part 2. Experiments
,”
J. Fluid Mech.
,
26
(
4
), pp.
713
751
.
2.
Païdoussis
,
M. P.
,
1968
, “
Stability of Towed, Totally Submerged Flexible Cylinders
,”
J. Fluid Mech.
,
34
(
2
), pp.
272
297
.
3.
Païdoussis
,
M. P.
,
1973
, “
Dynamics of Cylindrical Structures in Axial Flow
,”
J. Sound Vib.
,
29
(
3
), pp.
365
385
.
4.
Semler
,
C.
,
Lopes
,
J. L.
,
Augu
,
N.
, and
Païdoussis
,
M. P.
,
2002
, “
Linear and Nonlinear Dynamics of Cantilever Cylinders in Axial Flow—Part 3. Nonlinear Dynamics
,”
J. Fluids Struct.
,
16
(
6
), pp.
739
759
.
5.
De Langre
,
E.
,
Païdoussis
,
M. P.
,
Doaré
,
O.
, and
Modarres-Sadeghi
,
Y.
,
2007
, “
Flutter of Long Flexible Cylinders in Axial Flow
,”
J. Fluid Mech.
,
571
, pp.
371
389
.
6.
Ni
,
C. C.
, and
Hansen
,
R. J.
,
1978
, “
An Experimental Study of the Flow-Induced Motions of a Flexible Cylinder in Axial Flow
,”
ASME J. Fluids Eng.
,
100
(
4
), pp.
389
394
.
7.
Sudarsan
,
K.
,
Bhattacharyya
,
S. K.
, and
Vendhan
,
C. P.
,
1997
, “
An Experimental Study of Hydroelastic Instability of Flexible Towed Underwater Cylindrical Structures
,” 16th OMAE Conference, Yokohama, Japan, Vol. A, pp. 73–80.
8.
Keith
,
W. L.
,
Cipolla
,
K. M.
,
Hart
,
D. R.
, and
Furey
,
D. A.
,
2004
, “
Drag Measurements on Long, Thin Cylinders at Small Angles and High Reynolds Numbers
,” Newport, RI, NUWC-NPT Technical Report No. 11,555.
9.
Cipolla
,
K. M.
,
Keith
,
W. L.
, and
Abraham
,
B. M.
,
2001
, “
axisymmetric Turbulent Boundary Layer Measurements on Long, Thin Lines Towed at Moderate Reynolds Numbers
,” Newport, RI, NUWC-NPT Technical Report No. 11,273.
10.
Cipolla
,
K. M.
, and
Keith
,
W. L.
,
2003
, “
Momentum Thickness Measurements for Thick axisymmetric Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
125
(
3
), pp.
569
575
.
11.
Cipolla
,
K. M.
, and
Keith
,
W. L.
,
2003
, “
High Reynolds Number Thick axisymmetric Turbulent Boundary Layers
,”
Exp. Fluids
,
35
(
5
), pp.
477
485
.
12.
Cipolla
,
K. M.
, and
Keith
,
W. L.
,
2008
, “
Measurements of the Wall Pressure Spectra on a Full-Scale Experimental Towed Array
,”
Ocean Eng.
,
35
(
10
), pp.
1052
1059
.
13.
Cipolla
,
K. M.
,
Keith
,
W. L.
, and
Furey
,
D.
,
2006
, “
Investigation of the Near Wall Pressure Spectra and Near Field Flow Velocity on a Full Scale Towed Array Model
,”
26th Symposium on Naval Hydrodynamics
, Rome, Italy.
14.
Elboth
,
T.
,
Lilja
,
D.
,
Pettersson
,
B. A.
, and
Oyvind
,
A.
,
2010
, “
Investigation of Flow and Flow Noise Around a Seismic Streamer Cable
,”
Geophysics
,
75
, pp.
1
16
.
15.
Jordan
,
S. A.
,
1999
, “
A Large-Eddy Simulation Methodology in Generalized Curvilinear Coordinates
,”
J. Comput. Phys.
,
148
(
2
), pp.
322
340
.
16.
Jordan
,
S. A.
,
2007
, “
The Spatial Resolution Properties of Composite Compact Finite Differencing
,”
J. Comput. Phys.
,
221
(
2
), pp.
558
576
.
17.
Jordan
,
S. A.
,
2012
, “
An Inflow Method for axisymmetric Turbulent Boundary Layers Along Very Long Slender Cylinders
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051202
.
18.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.
19.
Schlüter
,
J. U.
,
Pitsch
,
H.
, and
Moin
,
P.
,
2004
, “
LES Inflow Conditions for Coupling With Reynolds-Averaged Flow Solvers
,”
AIAA J.
,
42
(
3
), pp.
478
484
.
20.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.
21.
Willmarth
,
W. W.
,
Winkel
,
R. E.
,
Sharma
,
L. K.
, and
Bogar
,
T. J.
,
1976
, “
Axially Symmetric Turbulent Boundary Layers on Cylinders; Mean Velocities Profiles and Wall Pressure Fluctuations
,”
J. Fluid Mech.
,
76
(
1
), pp.
35
64
.
22.
Luxton
,
R. E.
,
Bull
,
M. K.
, and
Rajagopalan
,
S.
,
1984
, “
The Thick Turbulent Boundary Layer on a Long Fine Cylinder in Axial Flow
,”
J. Aero.
,
88
, pp.
186
199
.
23.
Lueptow
,
M. R.
,
Leehey
,
P.
, and
Stellinger
,
T.
,
1985
, “
The Thick Turbulent Boundary Layer on a Cylinder: Mean and Fluctuating Velocities
,”
Phys. Fluids
,
28
(
12
), pp.
3495
3505
.
24.
Jordan
,
S. A.
,
2013
, “
A Skin Friction Model for axisymmetric Turbulent Boundary Layers
,”
Phys. Fluids
,
25
(
7
), p.
075104
.
25.
Rao
,
G. N. V.
,
1967
, “
The Law of the Wall in a Thick Axi-Symmetric Turbulent Boundary Layer
,”
ASME J. Appl. Mech.
,
34
(1), pp.
237
338
.
26.
Lueptow
,
M. R.
,
1985
, “
Turbulent Boundary Layer on a Cylinder in an Axial Flow
,” Newport, RI,
NUSC Technical Report No. 8389
.
27.
White
,
F. M.
,
1972
, “
An Analysis of axisymmetric Turbulent Flow Past a Long Cylinder
,”
ASME J. Basic Eng.
,
94
(
1
), pp.
200
208
.
28.
White
,
F. M.
,
1974
,
Viscous Fluid Flow
,
McGraw-Hill
, New York.
29.
Jordan
,
S. A.
,
2014
, “
A Simple Model of axisymmetric Turbulent Boundary Layers Along Long Thin Circular Cylinders
,”
Phys. Fluids
,
26
(
8
), p.
085110
.
30.
Ackroyd
,
J. A. D.
,
1982
, “
On the Analysis of Turbulent Boundary Layers on Slender Cylinders
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
185
189
.
31.
Tutty
,
O. R.
,
2008
, “
Flow Along a Long Thin Cylinder
,”
J. Fluid Mech.
,
602
, pp.
1
37
.
32.
Jordan
,
S. A.
,
2008
, “
A Priori Assessments of Numerical Uncertainty in Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(6), pp.
1171
1182
.
33.
Degraaff
,
D. B.
, and
Eaton
,
J. K.
,
2000
, “
Reynolds Number Scaling of the Flat Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
, pp.
319
331
.
34.
Metzger
,
M. M.
,
Klewicki
,
J. C.
,
Bradshaw
,
K. L.
, and
Sadr
,
R.
,
2001
, “
Scaling the Near-Wall Axial Turbulent Stress in the Zero Pressure Gradient Boundary Layer
,”
Phys. Fluids
,
13
(
6
), pp.
1819
1825
.
35.
Willmarth
,
W. W.
, and
Yang
,
C. S.
,
1970
, “
Wall Pressure Fluctuations Beneath Turbulent Boundary Layers on a Flat Plate and a Cylinder
,”
J. Fluid Mech.
,
41
(
01
), pp.
47
80
.
36.
Lueptow
,
M. R.
, and
Haritonidis
,
J. H.
,
1987
, “
The Structure of Turbulent Boundary Layer on a Cylinder in Axial Flow
,”
Phys. Fluids
,
30
(
10
), pp.
2993
3006
.
37.
Chase
,
D. M.
,
1987
, “
Character of the Turbulent Wall Pressure Spectrum at Subconvective Wavenumbers and a Suggested Comprehensive Model
,”
J. Sound Vib.
,
112
(
1
), pp.
125
147
.
You do not currently have access to this content.