Abstract

An effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under a high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high-temperature uniformity for the batteries under high discharge rates, especially under the extremely uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase in the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase in the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1, and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio, and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.

References

1.
Zhao
,
G.
,
Wang
,
X. L.
,
Negnevitsky
,
M.
, and
Zhang
,
H.
,
2021
, “
A Review of Air-Cooling Battery Thermal Management Systems for Electric and Hybrid Electric Vehicles
,”
J. Power Sources
,
501
(
1
), p.
230001
.
2.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
3.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
(
4
), pp.
262
281
.
4.
Sharma
,
D. K.
, and
Prabhakar
,
A.
,
2021
, “
A Review on Air Cooled and Air Centric Hybrid Thermal Management Techniques for Li-Ion Battery Packs in Electric Vehicles
,”
J. Energy Storage
,
41
(
2
), p.
102885
.
5.
Liao
,
X.
,
Ma
,
C.
,
Peng
,
X.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
Temperature Distribution Optimization of an Air-Cooling Lithium-Ion Battery Pack in Electric Vehicles Based on the Response Surface Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041002
.
6.
Zhao
,
G.
,
Wang
,
X. L.
,
Negnevitsky
,
M.
, and
Li
,
C. J.
,
2023
, “
An Up-to-Date Review on the Design Improvement and Optimization of the Liquid-Cooling Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
219
(
11
), p.
119626
.
7.
Shen
,
H.
,
Li
,
M.
,
Wang
,
Y.
,
Wang
,
H.
,
Feng
,
X.
, and
Wang
,
J.
,
2023
, “
Effect of Liquid Cooling Structure of Confluence Channel on Thermal Performance of Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
21
(
1
), p.
011001
.
8.
Wu
,
N.
,
Chen
,
Y.
,
Lin
,
B.
,
Li
,
J.
, and
Zhou
,
X.
,
2022
, “
Thermal Performance Evaluation of Boiling Cooling System for the High-Rate Large-Format Lithium-Ion Battery Under Coolant Starvations
,”
J. Energy Storage
,
55
(
3
), p.
105616
.
9.
Li
,
X.
,
Lv
,
L.
,
Wang
,
X.
, and
Li
,
J.
,
2021
, “
Transient Thermodynamic Response and Boiling Heat Transfer Limit of Dielectric Liquids in a Two-Phase Closed Direct Immersion Cooling System
,”
Ther. Sci. Eng. Prog.
,
25
(
42
), p.
100986
.
10.
Hekimoğlu
,
G.
, and
Sarı
,
A.
,
2022
, “
A Review on Phase Change Materials (PCMs) for Thermal Energy Storage Implementations
,”
Mater. Today: Proc.
,
58
(
1
), pp.
1360
1367
.
11.
Wang
,
Y.
,
Wang
,
Z.
,
Min
,
H.
,
Li
,
H.
, and
Li
,
Q.
,
2021
, “
Performance Investigation of a Passive Battery Thermal Management System Applied With Phase Change Material
,”
J. Energy Storage
,
35
(
2
), p.
102279
.
12.
Wang
,
X.
,
Wen
,
Q.
,
Yang
,
J.
,
Xiang
,
J.
,
Wang
,
Z.
,
Weng
,
C.
,
Chen
,
F.
, and
Zheng
,
S.
,
2022
, “
A Review on Data Centre Cooling System Using Heat Pipe Technology
,”
Sustain. Comput.: Inform. Syst.
,
35
, p.
100774
.
13.
Wang
,
S.
,
Lu
,
L.
,
Ren
,
D.
,
Feng
,
X.
,
Gao
,
S.
, and
Ouyang
,
M.
,
2019
, “
Experimental Investigation on the Feasibility of Heat Pipe-Based Thermal Management System to Prevent Thermal Runaway Propagation
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
3
), p.
031006
.
14.
Tang
,
Z.
,
Feng
,
R.
,
Huang
,
P.
,
Bai
,
Z.
, and
Wang
,
Q.
,
2022
, “
Modeling Analysis on the Cooling Efficiency of Composite Phase Change Material-Heat Pipe Coupling System in Battery Pack
,”
J. Loss Prev. Process Ind.
,
78
(
6
), p.
104829
.
15.
Yang
,
H.
,
Li
,
M.
,
Wang
,
Z.
, and
Ma
,
B.
,
2023
, “
A Compact and Lightweight Hybrid Liquid Cooling System Coupling With Z-Type Cold Plates and PCM Composite for Battery Thermal Management
,”
Energy
,
263
(
3
), p.
126026
.
16.
Li
,
W. Q.
,
Li
,
Y. X.
,
Yang
,
T. H.
,
Zhang
,
T. Y.
, and
Qin
,
F.
,
2023
, “
Experimental Investigation on Passive Cooling, Thermal Storage and Thermoelectric Harvest With Heat Pipe-Assisted PCM-Embedded Metal Foam
,”
Int. J. Heat Mass Transfer
,
201
, p.
123651
.
17.
An
,
Z.
,
Jia
,
L.
,
Ding
,
Y.
,
Dang
,
C.
, and
Li
,
X.
,
2017
, “
A Review on Lithium-Ion Power Battery Thermal Management Technologies and Thermal Safety
,”
J. Therm. Sci.
,
26
(
5
), pp.
391
412
.
18.
Kavasoğullari
,
B.
,
Karagöz
,
M. E.
,
Yildiz
,
A. S.
, and
Biçer
,
E.
,
2023
, “
Numerical Investigation of the Performance of a Hybrid Battery Thermal Management System at High Discharge Rates
,”
J. Energy Storage
,
73
, p.
108982
.
19.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G. H.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
(
2
), pp.
846
854
.
20.
Tian
,
Z.
,
Huang
,
Z.
,
Xu
,
S.
,
Li
,
K.
, and
Gao
,
W.
,
2023
, “
Direct Liquid Cooling Heat Transfer in Microchannel: Experimental Results and Correlations Assessment
,”
Appl. Therm. Eng.
,
223
, p.
120020
.
21.
Ren
,
R.
,
Zhao
,
Y.
,
Diao
,
Y.
, and
Liang
,
L.
,
2023
, “
Experimental Study on the Bottom Liquid Cooling Thermal Management System for Lithium-Ion Battery Based on Multichannel Flat Tube
,”
Appl. Therm. Eng.
,
219
(
5
), p.
119636
.
22.
Liu
,
H.
,
Gao
,
X.
,
Zhao
,
J.
,
Yu
,
M.
,
Niu
,
D.
, and
Ji
,
Y.
,
2022
, “
Liquid-Based Battery Thermal Management System Performance Improvement With Intersected Serpentine Channels
,”
Renewable Energy
,
199
, pp.
640
652
.
23.
Fan
,
Y.
,
Wang
,
Z.
,
Fu
,
T.
, and
Wu
,
H.
,
2022
, “
Numerical Investigation on Lithium-Ion Battery Thermal Management Utilizing a Novel Tree-Like Channel Liquid Cooling Plate Exchanger
,”
Int. J. Heat Mass Transfer
,
183
(
1
), p.
122143
.
24.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
25.
Cheng
,
J. P.
,
Shuai
,
S. L.
,
Tang
,
Z. G.
, and
changfa
T.
,
2023
, “
Thermal Performance of a Lithium-Ion Battery Thermal Management System With Vapor Chamber and Minichannel Cold Plate
,”
Appl. Therm. Eng.
,
222
, p.
119694
.
26.
Deng
,
T.
,
Zhang
,
G.
, and
Ran
,
Y.
,
2018
, “
Study on Thermal Management of Rectangular Li-Ion Battery With Serpentine-Channel Cold Plate
,”
Int. J. Heat Mass Transfer
,
125
, pp.
143
152
.
27.
Zhang
,
Y.
,
Zuo
,
W.
,
Jiaqiang
,
E.
,
Li
,
J.
,
Li
,
Q.
,
Sun
,
K.
,
Zhou
,
K.
, and
Zhang
,
G.
,
2022
, “
Performance Comparison Between Straight Channel Cold Plate and Inclined Channel Cold Plate for Thermal Management of a Prismatic LiFePO4 Battery
,”
Energy
,
248
(
11
), p.
123637
.
28.
Ren
,
H.
,
Yin
,
L.
,
Dang
,
C.
,
Liu
,
R.
,
Jia
,
L.
, and
Ding
,
Y.
,
2023
, “
Phase-Change Cooling of Lithium-Ion Battery Using Parallel Mini-Channels Cold Plate With Varying Flow Rate
,”
Case Stud. Therm. Eng.
,
45
, p.
102960
.
29.
Tuo
,
H.
, and
Hrnjak
,
P.
,
2013
, “
Effect of the Header Pressure Drop Induced Flow Maldistribution on the Microchannel Evaporator Performance
,”
Int. J. Refrig.
,
36
(
8
), pp.
2176
2186
.
30.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2021
, “
Effects of Inlet/Outlet Manifold Configuration on the Thermo-Hydrodynamic Performance of Recharging Microchannel Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031003
.
31.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.
32.
Liu
,
F.
,
Chen
,
Y.
,
Qin
,
W.
, and
Li
,
J.
,
2023
, “
Optimal Design of Liquid Cooling Structure With Bionic Leaf Vein Branch Channel for Power Battery
,”
Appl. Therm. Eng.
,
218
(
808
), p.
119283
.
33.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), p.
R1
.
34.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1984
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
35.
Chen
,
Z.
,
Qin
,
Y.
,
Dong
,
Z.
,
Zheng
,
J.
, and
Liu
,
Y.
,
2023
, “
Numerical Study on the Heat Generation and Thermal Control of Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
221
, p.
119852
.
36.
Tang
,
Z.
,
Ji
,
Y.
,
Sun
,
R.
, and
Cheng
,
J.
,
2023
, “
Simulation Study on Thermal Performance of an Indirect Boiling Cooling Cylindrical Battery System With Two-Phase Coolant R141b
,”
Energy Technol.
, pp.
1
13
.
37.
Lu
,
Y.
,
Wang
,
J.
,
Liu
,
F.
,
Liu
,
Y.
,
Wang
,
F.
,
Yang
,
N.
,
Lu
,
D.
, and
Jia
,
Y.
,
2022
, “
Performance Optimisation of Tesla Valve-Type Channel for Cooling Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
212
(
8
), p.
118583
.
38.
Tang
,
Z. G.
,
Liu
,
Z. Q.
,
Zhao
,
R. C.
, and
Cheng
,
J. P.
,
2022
, “
Investigation on the Thermal Management Performance of a Parallel Liquid Cooling Structure for Prismatic Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
2
), p.
021002
.
39.
Tang
,
Z. G.
,
Liu
,
Z. Q.
,
Li
,
J.
, and
Cheng
,
J. P.
,
2021
, “
A Lightweight Liquid Cooling Thermal Management Structure for Prismatic Batteries
,”
J. Energy Storage
,
42
(
2
), p.
103078
.
40.
Jiaqiang
,
E.
,
Han
,
D.
,
Qiu
,
A.
,
Zhu
,
H.
,
Deng
,
Y.
,
Chen
,
J.
,
Zhao
,
X.
, et al
,
2018
, “
Orthogonal Experimental Design of Liquid-Cooling Structure on the Cooling Effect of a Liquid-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
508
520
.
41.
Wang
,
J.
,
Lu
,
S.
,
Wang
,
Y.
,
Ni
,
Y.
, and
Zhang
,
S.
,
2020
, “
Novel Investigation Strategy for Mini-Channel Liquid-Cooled Battery Thermal Management System
,”
Int. J. Energy Res.
,
44
(
3
), pp.
1971
1985
.
You do not currently have access to this content.