Abstract

Safety issues of lithium-ion batteries under mechanical abuse have attracted worldwide attention due to its high uncertainty and high risks, following by the rapid increase of market share for lithium-ion battery-driven smart products. In this work, the safety behavior of a pouch battery under mechanical abuse conditions is numerically investigated using a simultaneously coupled mechanical–electrochemical–thermal model. The short-circuit and electrochemical–thermal responses of lithium-ion batteries under various mechanical abuse conditions are successfully predicted and compared. The main impact factors, including the state of charge (SOC), indenter shape and size, and loading displacement, are systematically studied and analyzed. The comprehensive parametric studies show that the battery is in a more dangerous state under higher SOC, identify the critical distinction of the short-circuit behavior between sharp indenter and blunt indenters for battery, and explain the discrepancies in the repeated mechanical abuse tests. These conclusions provide theoretical insights for understanding the failure mechanism of lithium-ion batteries under mechanical abuse, and technical support for the safety design of battery packs.

References

1.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mat.
,
22
(
3
), pp.
587
603
. 10.1021/cm901452z
2.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
. 10.1016/j.ensm.2017.05.013
3.
Finegan
,
D. P.
,
Darst
,
J.
,
Walker
,
W.
,
Li
,
Q.
,
Yang
,
C.
,
Jervis
,
R.
,
Heenan
,
T. M. M.
,
Hack
,
J.
,
Thomas
,
J. C.
,
Rack
,
A.
,
Brett
,
D. J. L.
,
Shearing
,
P. R.
,
Keyser
,
M.
, and
Darcy
,
E.
,
2019
, “
Modelling and Experiments to Identify High-Risk Failure Scenarios for Testing the Safety of Lithium-Ion Cells
,”
J. Power Sources
,
417
, pp.
29
41
. 10.1016/j.jpowsour.2019.01.077
4.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
5.
Wang
,
Q.
,
Mao
,
B.
,
Stoliarov
,
S. I.
, and
Sun
,
J.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
. 10.1016/j.pecs.2019.03.002
6.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
. 10.1016/j.ensm.2019.06.036
7.
Lamb
,
J.
,
Orendorff
,
C. J.
,
Steele
,
L. A. M.
, and
Spangler
,
S. W.
,
2015
, “
Failure Propagation in Multi-cell Lithium Ion Batteries
,”
J. Power Sources
,
283
, pp.
517
523
. 10.1016/j.jpowsour.2014.10.081
8.
Lamb
,
J.
, and
Orendorff
,
C. J.
,
2014
, “
Evaluation of Mechanical Abuse Techniques in Lithium Ion Batteries
,”
J. Power Sources
,
247
, pp.
189
196
. 10.1016/j.jpowsour.2013.08.066
9.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2016
, “
Simulation and Experimental Study on Lithium Ion Battery Short Circuit
,”
Appl. Energy
,
173
, pp.
29
39
. 10.1016/j.apenergy.2016.04.016
10.
Zhu
,
J.
,
Wierzbicki
,
T.
, and
Li
,
W.
,
2018
, “
A Review of Safety-Focused Mechanical Modeling of Commercial Lithium-Ion Batteries
,”
J. Power Sources
,
378
, pp.
153
168
. 10.1016/j.jpowsour.2017.12.034
11.
Wang
,
H.
,
Simunovic
,
S.
,
Maleki
,
H.
,
Howard
,
J. N.
, and
Hallmark
,
J. A.
,
2016
, “
Internal Configuration of Prismatic Lithium-Ion Cells at the Onset of Mechanically Induced Short Circuit
,”
J. Power Sources
,
306
, pp.
424
430
. 10.1016/j.jpowsour.2015.12.026
12.
Wang
,
H.
,
Kumar
,
A.
,
Simunovic
,
S.
,
Allu
,
S.
,
Kalnaus
,
S.
,
Turner
,
J. A.
,
Helmers
,
J. C.
,
Rules
,
E. T.
,
Winchester
,
C. S.
, and
Gorney
,
P.
,
2017
, “
Progressive Mechanical Indentation of Large-Format Li-Ion Cells
,”
J. Power Sources
,
341
, pp.
156
164
. 10.1016/j.jpowsour.2016.11.094
13.
Kalnaus
,
S.
,
Wang
,
H.
,
Watkins
,
T. R.
,
Simunovic
,
S.
, and
Sengupta
,
A.
,
2019
, “
Features of Mechanical Behavior of EV Battery Modules Under High Deformation Rate
,”
Extreme Mech. Lett.
,
32
, p.
100550
. 10.1016/j.eml.2019.100550
14.
Xu
,
J.
,
Liu
,
B.
, and
Hu
,
D.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
21829
. 10.1038/srep21829
15.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
. 10.1016/j.apenergy.2016.03.108
16.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
. 10.1016/j.jpowsour.2013.04.135
17.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
, pp.
503
516
. 10.1016/j.jpowsour.2013.08.056
18.
Li
,
W.
,
Zhu
,
J.
,
Xia
,
Y.
,
Gorji
,
M. B.
, and
Wierzbicki
,
T.
,
2019
, “
Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles
,”
Joule
,
3
(
11
), pp.
2703
2715
. 10.1016/j.joule.2019.07.026
19.
Zhu
,
J.
,
Li
,
W.
,
Wierzbicki
,
T.
,
Xia
,
Y.
, and
Harding
,
J.
,
2019
, “
Deformation and Failure of Lithium-Ion Batteries Treated as a Discrete Layered Structure
,”
Int. J. Plasticity
,
121
, pp.
293
311
. 10.1016/j.ijplas.2019.06.011
20.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
. 10.1016/j.jpowsour.2018.12.059
21.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
. 10.1016/J.ENGFAILANAL.2015.03.025
22.
Wang
,
W.
,
Yiding
,
L.
,
Cheng
,
L.
,
Yuefeng
,
S.
, and
Sheng
,
Y.
,
2019
, “
State of Charge-Dependent Failure Prediction Model for Cylindrical Lithium-Ion Batteries Under Mechanical Abuse
,”
Appl. Energy
,
251
, p.
113365
. 10.1016/j.apenergy.2019.113365
23.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2015
, “
Modeling Internal Shorting Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1352
A1364
. 10.1149/2.1031507jes
24.
Ramadass
,
P.
,
Fang
,
W.
, and
Zhang
,
Z.
,
2014
, “
Study of Internal Short in a Li-Ion Cell I. Test Method Development Using Infra-red Imaging Technique
,”
J. Power Sources
,
248
, pp.
769
776
. 10.1016/j.jpowsour.2013.09.145
25.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
26.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
, pp.
309
321
. 10.1016/j.jpowsour.2015.08.049
27.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120501
. 10.1149/1945-7111/aba96f
28.
Liu
,
B.
,
Yin
,
S.
, and
Xu
,
J.
,
2016
, “
Integrated Computation Model of Lithium-Ion Battery Subject to Nail Penetration
,”
Appl. Energy
,
183
, pp.
278
289
. 10.1016/j.apenergy.2016.08.101
29.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
. 10.1016/j.electacta.2017.10.045
30.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
, and
Yuan
,
Q.
,
2019
, “
Dynamic Mechanical Behavior of Prismatic Lithium-Ion Battery Upon Impact
,”
Int. J. Energy Res.
,
43
, pp.
7421
7432
. 10.1002/er.4774
31.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
, pp.
205
216
. 10.1016/j.ijimpeng.2017.04.025
32.
Li
,
W.
,
Xia
,
Y.
,
Chen
,
G.
, and
Sahraei
,
E.
,
2018
, “
Comparative Study of Mechanical-Electrical-Thermal Responses of Pouch, Cylindrical, and Prismatic Lithium-Ion Cells Under Mechanical Abuse
,”
Sci. Chin. Technol. Sci.
,
61
(
10
), p.
1472
. 10.1007/s11431-017-9296-0
33.
Zhu
,
X.
,
Wang
,
H.
,
Wang
,
X.
,
Gao
,
Y.
,
Allu
,
S.
,
Cakmak
,
E.
, and
Wang
,
Z.
,
2020
, “
Internal Short Circuit and Failure Mechanisms of Lithium-Ion Pouch Cells Under Mechanical Indentation Abuse Conditions: An Experimental Study
,”
J. Power Sources
,
455
, p.
227939
. 10.1016/j.jpowsour.2020.227939
34.
Kim
,
J.
,
Mallarapu
,
A.
, and
Santhanagopalan
,
S.
,
2020
, “
Transport Processes in a Li-Ion Cell During an Internal Short-Circuit
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090554
. 10.1149/1945-7111/ab995d
35.
Santhanagopalan
,
S.
,
Ramadass
,
P.
, and
Zhang
,
J.
,
2009
, “
Analysis of Internal Short-Circuit in a Lithium Ion Cell
,”
J. Power Sources
,
194
(
1
), pp.
550
557
. 10.1016/j.jpowsour.2009.05.002
36.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
, pp.
126
137
. 10.1016/j.jpowsour.2017.04.103
37.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A.
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
38.
Finegan
,
D. P.
,
Tjaden
,
B.
,
Heenan
,
T. M. M.
,
Jervis
,
R.
,
Michiel
,
M. D.
,
Rack
,
A.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2017
, “
Tracking Internal Temperature and Structural Dynamics During Nail Penetration of Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3285
A3291
. 10.1149/2.1501713jes
39.
Feng
,
X.
,
Ren
,
D.
,
He
,
X.
, and
Ouyang
,
M.
,
2020
, “
Mitigating Thermal Runaway of Lithium-Ion Batteries
,”
Joule
,
4
(
4
), pp.
1
28
. 10.1016/j.joule.2020.02.010
40.
Yuan
,
C.
,
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Generalized Separator Failure Criteria for Internal Short Circuit of Lithium-Ion Battery
,”
J. Power Sources
,
467
, p.
228360
. 10.1016/j.jpowsour.2020.228360
41.
Jia
,
Y.
,
Liu
,
B.
,
Hong
,
Z.
,
Yin
,
S.
,
Finegan
,
D. P.
, and
Xu
,
J.
,
2020
, “
Safety Issues of Defective Lithium-Ion Batteries: Identification and Risk Evaluation
,”
J. Mater. Chem. A.
,
8
(
43
), pp.
12472
12484
. 10.1039/D0TA04171H
You do not currently have access to this content.