A scheme of dynamic recurrent neural networks (DRNNs) is discussed in this paper, which provides the potential for the learning and control of a general class of unknown discrete-time nonlinear systems which are treated as “black boxes” with multi-inputs and multi-outputs (MIMO). A model of the DRNNs is described by a set of nonlinear difference equations, and a suitable analysis for the input-output dynamics of the model is performed to obtain the inverse dynamics. The ability of a DRNN structure to model arbitrary dynamic nonlinear systems is incorporated to approximate the unknown nonlinear input-output relationship using a dynamic back propagation (DBP) learning algorithm. An equivalent control concept is introduced to develop a model based learning control architecture with simultaneous on-line identification and control for unknown nonlinear plants. The potentials of the proposed methods are demonstrated by simulation results.

This content is only available via PDF.
You do not currently have access to this content.