Skip Nav Destination
Issues
December 2022
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Modal Analysis for Localization of Harmonic Oscillations in Nonlinear Oscillator Arrays
J. Comput. Nonlinear Dynam. December 2022, 17(12): 121001.
doi: https://doi.org/10.1115/1.4055430
Topics:
Frequency response
,
Modal analysis
,
Oscillations
,
Equations of motion
Vibro-Impact Motions of a Three-Degree-of-Freedom Geartrain Subjected to Torque Fluctuations: Model and Experiments
J. Comput. Nonlinear Dynam. December 2022, 17(12): 121002.
doi: https://doi.org/10.1115/1.4055595
Topics:
Fluctuations (Physics)
,
Gears
,
Torque
,
Excitation
Robust Force Estimation for Magnetorheological Damper Based on Complex Value Convolutional Neural Network
J. Comput. Nonlinear Dynam. December 2022, 17(12): 121003.
doi: https://doi.org/10.1115/1.4055731
Topics:
Artificial neural networks
,
Dampers
,
Displacement
,
Particle swarm optimization
,
Algorithms
,
Filters
Boundary Transformation Vectors: A Geometric Method of Quantifying Attractor Deformation for Structural Health Monitoring
J. Comput. Nonlinear Dynam. December 2022, 17(12): 121004.
doi: https://doi.org/10.1115/1.4055791
Topics:
Attractors
,
Cantilever beams
,
Damage
,
Dampers
,
Deformation
,
Excitation
,
Springs
,
Structural health monitoring
,
Signals
,
Stiffness
Modeling Flexible Multi-Body Systems Within the Udwadia–Kalaba Framework, a Lumped Parameter Approach
J. Comput. Nonlinear Dynam. December 2022, 17(12): 121005.
doi: https://doi.org/10.1115/1.4055957
Topics:
Kaolin
,
Modeling
,
Multibody systems
,
Springs
,
Dynamics (Mechanics)
,
Stiffness
Twice Harmonic Balance Method for Stability and Bifurcation Analysis of Quasi-Periodic Responses
J. Comput. Nonlinear Dynam. December 2022, 17(12): 121006.
doi: https://doi.org/10.1115/1.4055923
Topics:
Bifurcation
,
Quadratic programming
,
Stability
Discussion
Discussion on the Paper “Synchronization Via Fractal–Fractional Differential Operators on Two-Mass Torsional Vibration System Consisting of Motor and Roller, Abro, K. A., and Atangana, A., 2021, ASME J. Comput. Nonlinear Dyn., 16(12), p. 121002”
J. Comput. Nonlinear Dynam. December 2022, 17(12): 125501.
doi: https://doi.org/10.1115/1.4055922
Topics:
Engines
,
Fractals
,
Motors
,
Rollers
,
Synchronization
,
Vibration equipment
Email alerts
RSS Feeds
Minimizing Computational Time for Long-Term Three-Dimensional Dynamic Simulation of Stem Cell Adipogenesis
J. Comput. Nonlinear Dynam (June 2025)
An Efficient Iterative Technique for Solving Fractional Diffusion-Wave Equations
J. Comput. Nonlinear Dynam
Nonlinear Model Predictive Control of Urban Air Mobility Aircraft with Gust Disturbance
J. Comput. Nonlinear Dynam