Abstract

Despite the unconstrained thermal expansion is assumed stress-free, the conventional FE approach requires formulating elastic forces, and this in turn leads to elastic stresses. A displacement-based formulation, on the other hand, can be used to address this limitation by converting the thermal energy to kinetic energy instead of strain energy. The fundamental differences between the strain- and kinetic-energy approaches are discussed. It is shown that the unconstrained thermal expansion predicted using the kinetic-energy approach is independent of the continuum constitutive model, and consequently, such a formulation can be used for both solids and fluids. The displacement (kinetic) and strain (stress) formulations are discussed to shed light on the mechanism of thermal expansion at the macroscopic level. The thermal-expansion displacement formulation (TEDF) and position-gradient multiplicative decomposition into thermal and mechanical parts are used to compute the thermal stresses due to boundary and motion constraints (BMC). TEDF implementation issues are discussed and constant matrices evaluated at a preprocessing stage after applying sweeping matrix technique to eliminate rigid-body thermal-displacement translational modes are identified. Furthermore, the softening effect due to the constitutive-model dependence on the temperature is investigated at high temperatures. Numerical results are presented to show fundamental differences between the TEDF approach that converts heat energy to kinetic energy and conventional FE approach that converts heat energy to strain energy that produces elastic stresses.

References

1.
Johnston
,
J. D.
, and
Thornton
,
E. A.
,
2000
, “
Thermally Induced Dynamics of Satellite Solar Panels
,”
J. Spacecr. Rockets
,
37
(
5
), pp.
604
613
.10.2514/2.3633
2.
Carlson
,
D. E.
,
1973
,
Linear Thermoelasticity
,
Springer
,
Berlin/Heidelberg
.
3.
Shabana
,
A. A.
,
1986
, “
Thermal Analysis of Viscoelastic Multibody Systems
,”
Mech. Mach. Theory
,
21
(
3
), pp.
231
242
.10.1016/0094-114X(86)90099-6
4.
Na
,
S.
,
Yoon
,
G. C.
,
Lee
,
B. H.
,
Marzocca
,
P.
, and
Librescu
,
L.
,
2008
, “
Dynamic Response Control of Rotating Composite Booms Under Solar Radiation
,”
J. Therm. Stresses
,
32
(
1–2
), pp.
21
40
.10.1080/01495730802540205
5.
Shen
,
Z.
,
Tian
,
Q.
,
Liu
,
X.
, and
Hu
,
G.
,
2013
, “
Thermally Induced Vibrations of Flexible Beams Using Absolute Nodal Coordinate Formulation
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
386
393
.10.1016/j.ast.2013.04.009
6.
Liu
,
J.
, and
Pan
,
K.
,
2016
, “
Rigid-Flexible-Thermal Coupling Dynamic Formulation for Satellite and Plate Multibody System
,”
Aerosp. Sci. Technol.
,
52
, pp.
102
114
.10.1016/j.ast.2016.02.025
7.
Azadi
,
E.
,
Fazelzadeh
,
S. A.
, and
Azadi
,
M.
,
2017
, “
Thermally Induced Vibrations of Smart Solar Panel in a Low-Orbit Satellite
,”
Adv. Space Res.
,
59
(
6
), pp.
1502
1513
.10.1016/j.asr.2016.12.034
8.
Čepon
,
G.
,
Starc
,
B.
,
Zupančič
,
B.
, and
Boltežar
,
M.
,
2017
, “
Coupled Thermo-Structural Analysis of a Bimetallic Strip Using the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
41
(
4
), pp.
391
402
.10.1007/s11044-017-9574-7
9.
Outinen
,
J.
, and
Mäkeläinen
,
P.
,
2004
, “
Mechanical Properties of Structural Steel at Elevated Temperatures and After Cooling Down
,”
Fire Mater.
,
28
(
2–4
), pp.
237
251
.10.1002/fam.849
10.
Su
,
M. N.
, and
Young
,
B.
,
2019
, “
Material Properties of Normal and High Strength Aluminum Alloys at Elevated Temperatures
,”
Thin-Walled Struct.
,
137
, pp.
463
471
.10.1016/j.tws.2019.01.012
11.
Pang
,
H. H.
, and
Brace
,
C. J.
,
2004
, “
Review of Engine Cooling Technologies for Modern Engines
,”
Proc. Inst. Mech. Eng., Part D.
,
218
(
11
), pp.
1209
1215
.10.1243/0954407042580110
12.
Le Reun
,
A.
,
Subrin
,
K.
,
Dubois
,
A.
, and
Garnier
,
S.
,
2022
, “
Thermal Drift and Backlash Issues for Industrial Robots Positioning Performance
,”
Robotica
,
40
(
9
), pp.
1
20
.10.1017/S0263574721002022
13.
Yadav
,
S.
,
Repetto
,
E. A.
,
Ravichandran
,
G.
, and
Ortiz
,
M.
,
2001
, “
A Computational Study of the Influence of Thermal Softening on Ballistic Penetration in Metals
,”
Int. J. Impact Eng.
,
25
(
8
), pp.
787
803
.10.1016/S0734-743X(01)00008-2
14.
Stainier
,
L.
,
Cuitiño
,
A. M.
, and
Ortiz
,
M.
,
2002
, “
A Micromechanical Model of Hardening, Rate Sensitivity and Thermal Softening in BCC Single Crystals
,”
J. Mech. Phys. Solids
,
50
(
7
), pp.
1511
1545
.10.1016/S0022-5096(01)00114-4
15.
Nasr
,
M.
,
Ng
,
E. G.
, and
Elbestawi
,
M.
,
2007
, “
Effects of Workpiece Thermal Properties on Machining-Induced Residual Stresses-Thermal Softening and Conductivity
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
9
), pp.
1387
1400
.10.1243/09544054JEM856
16.
Shen
,
F.
,
Münstermann
,
S.
, and
Lian
,
J.
,
2020
, “
An Evolving Plasticity Model Considering Anisotropy, Thermal Softening and Dynamic Strain Aging
,”
Int. J. Plast.
,
132
, p.
102747
.10.1016/j.ijplas.2020.102747
17.
Jensen
,
B. D.
,
Chow
,
L. W.
,
Webbink
,
R. F.
,
Saitou
,
K.
,
Volakis
,
J. L.
, and
Kurabayashi
,
K.
,
2004
, “
Force Dependence of RF MEMS Switch Contact Heating
,”
17th IEEE International Conference on Micro Electromechanical Systems, Maastricht MEMS 2004 Technical Digest
,
IEEE
, Maastricht, The Netherlands, Jan. 25–29, pp.
137
140
.10.1109/MEMS.2004.1290541
18.
Abdullah
,
M. A.
,
Albarody
,
T. M. B.
, and
Hussein
,
A. R.
,
2020
, “
Graphite Thermal Expansion Coefficient Measured by in-Situ x-Ray Diffraction
,”
Nanotechnology
,
31
(
28
), p.
285709
.10.1088/1361-6528/ab8040
19.
Dove
,
M. T.
,
1993
,
Introduction to Lattice Dynamics
, Vol.
4
,
Cambridge University Press
,
New York
.
20.
Ziman
,
J. M.
,
1972
,
Principles of the Theory of Solids
,
Cambridge University Press
,
New York
.
21.
Shabana
,
A. A.
,
Elbakly
,
M.
,
Abdalla
,
M.
, and
Eldeeb
,
A. E.
,
2023
, “
Thermo-Elasticity Displacement Formulation for Constrained Articulated Mechanical Systems
,”
Mech. Based Des. Struct. Mach.
,
51
(
9
), pp.
4783
4812
.10.1080/15397734.2023.2191695
22.
Maugin
,
G. A.
,
2014
, “
Duhamel's Pioneering Work in Thermo-Elasticity and Its Legacy
,”
Continuum Mechanics Through the Eighteenth and Nineteenth Centuries
,
Springer
,
Cham
, Switzerland, pp.
69
75
.
23.
Tunell
,
G.
,
1932
, “
On the History and Analytical Expression of the First and Second Laws of Thermodynamics, and the Rôle of the Differentials, dW and dQ
,”
J. Phys. Chem.
,
36
(
6
), pp.
1744
1771
.10.1021/j150336a011
24.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.10.1063/1.1722351
25.
Truesdell
,
C.
, and
Noll
,
W.
,
2004
,
The Non-Linear Field Theories of Mechanics
,
Springer
,
Berlin
.
26.
Dillon
,
O. W.
, Jr.
,
1962
, “
A Nonlinear Thermoelasticity Theory
,”
J. Mech. Phys. Solids
,
10
(
2
), pp.
123
131
.10.1016/0022-5096(62)90015-7
27.
Oden
,
J. T.
,
1969
, “
Finite Element Analysis of Nonlinear Problems in the Dynamical Theory of Coupled Thermoelasticity
,”
Nucl. Eng. Des.
,
10
(
4
), pp.
465
475
.10.1016/0029-5493(69)90082-X
28.
Chadwick
,
P.
,
1974
, “
Thermo-Mechanics of Rubberlike Materials
,”
Philos. Trans. R. Soc. London. Ser. A
,
276
(
1260
), pp.
371
403
.10.1098/rsta.1974.002
29.
Vujošević
,
L.
, and
Lubarda
,
V. A.
,
2002
, “
Finite-Strain Thermoelasticity Based on Multiplicative Decomposition of Deformation Gradient
,”
Theor. Appl. Mech.
,
28–29
, pp.
379
399
.10.2298/TAM0229379V
30.
Hu
,
Y.
,
Liu
,
F.
,
Zhu
,
W.
, and
Zhu
,
J.
,
2018
, “
Thermally Coupled Constitutive Relations of Thermoelastic Materials and Determination of Their Material Constants Based on Digital Image Correlation With a Laser Engraved Speckle Pattern
,”
Mech. Mater.
,
121
, pp.
10
20
.10.1016/j.mechmat.2018.02.002
31.
Lu
,
S. C. H.
, and
Pister
,
K.
,
1975
, “
Decomposition of Deformation and Representation of the Free Energy Function for Isotropic Thermoelastic Solids
,”
Int. J. Solids Struct.
,
11
(
7–8
), pp.
927
934
.10.1016/0020-7683(75)90015-3
32.
Simo
,
J. C.
, and
Miehe
,
C.
,
1992
, “
Associative Coupled Thermoplasticity at Finite Strains: Formulation, Numerical Analysis and Implementation
,”
Comput. Methods Appl. Mech. Eng.
,
98
(
1
), pp.
41
104
.10.1016/0045-7825(92)90170-O
33.
Wriggers
,
P.
,
Miehe
,
C.
,
Kleiber
,
M.
, and
Simo
,
J. C.
,
1992
, “
On the Coupled Thermomechanical Treatment of Necking Problems Via Finite Element Methods
,”
Int. J. Numer. Methods Eng.
,
33
(
4
), pp.
869
883
.10.1002/nme.1620330413
34.
ANSYS,
2013
,
ANSYS Mechanical APDL Theory Reference
,
ANSYS Inc
.,
Canonsburg, PA
.
35.
Shabana
,
A. A.
, and
Zhang
,
D.
,
2021
, “
ANCF Multiplicative-Decomposition Thermoelastic Approach for Arbitrary Geometry
,”
J. Struct. Eng.
,
147
(
7
), p.
04021086
.10.1061/(ASCE)ST.1943-541X.0003001
36.
Shabana
,
A. A.
,
Elbakly
,
M.
, and
Zhang
,
D.
,
2023
, “
Constrained Large-Displacement Thermal Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
2
), p.
021002
.10.1115/1.4056182
37.
Thomson
,
W. T.
,
1993
,
Theory of Vibration With Applications
, 4th ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
38.
Shabana
,
A. A.
,
2019
,
Vibration of Discrete and Continuous Systems
, 3rd ed.,
Springer
,
New York
.
39.
Shabana
,
A. A.
,
2021
,
Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics
,
Wiley
,
Chichester, UK
.
40.
Sinclair
,
M. J.
,
2000
, “
A High Force Low Area MEMS Thermal Actuator
,”
Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2000
,
IEEE
, Vol.
1
, Las Vegas, NV, May 23–26, pp.
127
132
.10.1109/ITHERM.2000.866818
You do not currently have access to this content.