Abstract

The main objective of this paper is to use the time variational method (TVM) for the nonlinear response analysis of mechanical systems subjected to multiple-frequency excitations. The system response, which is composed of fractional multiples of frequencies, is expressed in terms of a fundamental frequency that is the greatest common divisor of the approximated frequency components. Unlike the multiharmonic balance method (MHBM), the formulation of the proposed method is very simple in analyzing the systems with more than two excitation frequencies. In addition, the proposed method avoids the alternate transformation between frequency and time domains during the calculation of the nonlinear force and the Jacobian matrix. In this work, the performance of the proposed method is compared with that of numerical integration and the MHBM using three nonlinear mechanical models undergoing multiple-frequency excitations. It is observed that the proposed method produces approximate results during the quasi-periodic response analysis since the formulation includes an approximation of the incommensurate frequencies to commensurate ones. However, the approximation error is very small and the method reduces a significant amount of computational efforts compared to the other methods. In addition, the TVM is a recommended option when the number of state variables involved in the nonlinear function is high as it calculates the nonlinear force vector and the Jacobian matrix directly from the displacement vector. Moreover, the proposed method is far much faster than numerical integration in capturing the steady-state, quasi-periodic responses of the nonlinear mechanical systems.

References

1.
Childs
,
D.
,
1976
, “
A Modal Transient Rotordynamic Model for Dual-Rotor Jet Engine Systems
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
876
882
.10.1115/1.3439046
2.
Hibner
,
D. H.
,
1975
, “
Dynamic Response of Viscous-Damped Multi-Shaft Jet Engines
,”
J. Aircr.
,
12
(
4
), pp.
305
312
.10.2514/3.44448
3.
Gupta
,
K.
,
Gupta
,
K.
, and
Athre
,
K.
,
1993
, “
Unbalance Response of a Dual Rotor System: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
427
435
.10.1115/1.2930368
4.
Guskov
,
M.
,
Sinou
,
J.-J.
,
Thouverez
,
F.
, and
Naraikin
,
O.
,
2007
, “
Experimental and Numerical Investigations of a Dual-Shaft Test Rig With Intershaft Bearing
,”
Int. J. Rotating Mach.
,
2007
, pp.
1
12
.10.1155/2007/75762
5.
Han
,
Q. K.
,
Luo
,
H. T.
, and
Wen
,
B. C.
,
2009
, “
Simulations of a Dual-Rotor System With Local Rub-Impacts Based on Rigid-Flexible Multi-Body Model
,”
Key Eng. Mater.
,
413
, pp.
677
682
.10.4028/www.scientific.net/KEM.413-414.677
6.
Zhou
,
H.-L.
, and
Chen
,
G.
,
2009
, “
Dynamic Response Analysis of Dual Rotor-Ball Bearing-Stator Coupling System for Aero-Engine
,”
J. Aerosp. Power
,
24
(
6
),pp.
1284
1291
.http://en.cnki.com.cn/Article_en/CJFDTotal-HKDI200906014.htm
7.
Yang
,
Y.
,
Cao
,
D.
,
Yu
,
T.
,
Wang
,
D.
, and
Li
,
C.
,
2016
, “
Prediction of Dynamic Characteristics of a Dual-Rotor System With Fixed Point Rubbing Theoretical Analysis and Experimental Study
,”
Int. J. Mech. Sci.
,
115–116
, pp.
253
261
.10.1016/j.ijmecsci.2016.07.002
8.
Chen
,
S.-T.
, and
Wu
,
Z.-Q.
,
2012
, “
Rubbing Vibration Analysis for a Counter-Rotating Dual-Rotor System
,”
Zhendong yu Chongji (J. Vib. Shock)
,
31
(
23
), pp.
142
147
.http://en.cnki.com.cn/Article_en/CJFDTotal-ZDCJ201223029.htm
9.
Sun
,
C.
,
Chen
,
Y.
, and
Hou
,
L.
,
2016
, “
Steady-State Response Characteristics of a Dual-Rotor System Induced by Rub-Impact
,”
Nonlinear Dyn.
,
86
(
1
), pp.
91
105
.10.1007/s11071-016-2874-2
10.
Sun
,
C.
,
Chen
,
Y.
, and
Hou
,
L.
,
2018
, “
Nonlinear Dynamical Behaviors of a Complicated Dual-Rotor Aero-Engine With Rub-Impact
,”
Arch. Appl. Mech.
,
88
(
8
), pp.
1305
1324
.10.1007/s00419-018-1373-y
11.
Hou
,
L.
,
Chen
,
Y.
,
Fu
,
Y.
,
Chen
,
H.
,
Lu
,
Z.
, and
Liu
,
Z.
,
2017
, “
Application of the HB–AFT Method to the Primary Resonance Analysis of a Dual-Rotor System
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2531
2551
.10.1007/s11071-017-3394-4
12.
Lu
,
Z.
,
Wang
,
X.
,
Hou
,
L.
,
Chen
,
Y.
, and
Liu
,
X.
,
2019
, “
Nonlinear Response Analysis for an Aero Engine Dual-Rotor System Coupled by the Inter-Shaft Bearing
,”
Arch. Appl. Mech.
, pp.
1
14
.10.1007/s00419-018-01501-0
13.
Gao
,
P.
,
Hou
,
L.
,
Yang
,
R.
, and
Chen
,
Y.
,
2019
, “
Local Defect Modelling and Nonlinear Dynamic Analysis for the Inter-Shaft Bearing in a Dual-Rotor System
,”
Appl. Math. Modell.
,
68
, pp.
29
47
.10.1016/j.apm.2018.11.014
14.
Wang
,
N.
,
Liu
,
C.
,
Jiang
,
D.
, and
Behdinan
,
K.
,
2019
, “
Casing Vibration Response Prediction of Dual-Rotor-Blade-Casing System With Blade-Casing Rubbing
,”
Mech. Syst. Signal Process.
,
118
, pp.
61
77
.10.1016/j.ymssp.2018.08.029
15.
Yu
,
P.
,
Zhang
,
D.
,
Ma
,
Y.
, and
Hong
,
J.
,
2018
, “
Dynamic Modeling and Vibration Characteristics Analysis of the Aero-Engine Dual-Rotor System With Fan Blade Out
,”
Mech. Syst. Signal Process.
,
106
, pp.
158
175
.10.1016/j.ymssp.2017.12.012
16.
Delbez
,
A.
,
Charlot
,
G.
,
Ferraris
,
G.
, and
Lalanne
,
M.
,
1993
, “
Dynamic Behavior of a Counter-Rotating Multirotor Air Turbine Starter
,”
ASME
Paper No. 93-GT-059.10.1115/93-GT-059
17.
Ferraris
,
G.
,
Maisonneuve
,
V.
, and
Lalanne
,
M.
,
1996
, “
Prediction of the Dynamic Behavior of Non-Symmetrical Coaxial CO-OR Counter-Rotating Rotors
,”
J. Sound Vib.
,
195
(
4
), pp.
649
666
.10.1006/jsvi.1996.0452
18.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Sub-Harmonic Motions
,”
J. Sound Vib.
,
279
(
1–2
), pp.
417
451
.10.1016/j.jsv.2003.11.029
19.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2007
, “
A Non-Linear Dynamic Model for Planetary Gear Sets
,”
Proc. Inst. Mech. Eng., Part K
,
221
(
4
), pp.
567
576
.10.1243/14644193JMBD92
20.
Al-Shyyab
,
A.
,
Alwidyan
,
K.
,
Jawarneh
,
A.
, and
Tlilan
,
H.
,
2009
, “
Non-Linear Dynamic Behaviour of Compound Planetary Gear Trains: Model Formulation and Semi-Analytical Solution
,”
Proc. Inst. Mech. Eng., Part K
,
223
(
3
), pp.
199
210
.10.1243/14644193JMBD197
21.
Hahn
,
E.
, and
Chen
,
P.
,
1994
, “
Harmonic Balance Analysis of General Squeeze Film Damped Multi-Degree-of-Freedom Rotor Bearing Systems
,”
ASME J. Tribol.
,
116
(
3
), pp.
499
507
.10.1115/1.2928872
22.
Chen
,
C.-L.
, and
Yau
,
H.-T.
,
1998
, “
Chaos in the Imbalance Response of a Flexible Rotor Supported by Oil Film Bearings With Non-Linear Suspension
,”
Nonlinear Dyn.
,
16
(
1
), pp.
71
90
.10.1023/A:1008239206153
23.
Wang
,
J.
,
Zhou
,
J.
,
Dong
,
D.
,
Yan
,
B.
, and
Huang
,
C.
,
2013
, “
Nonlinear Dynamic Analysis of a Rub-Impact Rotor Supported by Oil Film Bearings
,”
Arch. Appl. Mech.
,
83
(
3
), pp.
413
430
.10.1007/s00419-012-0688-3
24.
Cheng
,
M.
,
Meng
,
G.
, and
Jing
,
J.
,
2007
, “
Numerical and Experimental Study of a Rotor–Bearing–Seal System
,”
Mech. Mach. Theory
,
42
(
8
), pp.
1043
1057
.10.1016/j.mechmachtheory.2006.04.010
25.
Boyaci
,
A.
,
Seemann
,
W.
, and
Proppe
,
C.
,
2011
, “
Bifurcation Analysis of a Turbocharger Rotor Supported by Floating Ring Bearings
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
, New Delhi, India, Mar. 23–26, pp.
335
347
.10.1007/978-94-007-0020-8_29
26.
Chang-Jian
,
C.-W.
, and
Chen
,
C.-K.
,
2007
, “
Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings
,”
Chaos, Solitons Fractals
,
34
(
4
), pp.
1160
1179
.10.1016/j.chaos.2006.04.021
27.
Kumar
,
C.
, and
Sarangi
,
S.
,
2018
, “
Dynamic Response of an Unbalanced Rigid Rotor Bearing System With a Nonlinear Hydrodynamic Force
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
9
), p.
090909
.10.1115/1.4037995
28.
Kim
,
C.
, and
Luh
,
P.
,
1981
, “
Motion and Loads of an Articulated Loading Platform in Waves
,”
OCEANS 81
, Boston, MA, Sept. 16–18, pp.
956
961
.10.1109/OCEANS.1981.1151541
29.
Ran
,
Z.
, and
Kim
,
M.
,
1995
, “
Responses of Articulated Loading Platform in Irregular Waves
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
121
(
6
), pp.
283
293
.10.1061/(ASCE)0733-950X(1995)121:6(283)
30.
Kim
,
Y.
,
1998
, “
Multiple Harmonic Balance Method for Aperiodic Vibration of a Piecewise-Linear System
,”
ASME J. Vib. Acoust.
,
120
(
1
), pp.
181
187
.10.1115/1.2893802
31.
Chua
,
L.
, and
Ushida
,
A.
,
1981
, “
Algorithms for Computing Almost Periodic Steady-State Response of Nonlinear Systems to Multiple Input Frequencies
,”
IEEE Trans. Circuits Syst.
,
28
(
10
), pp.
953
971
.10.1109/TCS.1981.1084921
32.
Ushida
,
A.
, and
Chua
,
L.
,
1984
, “
Frequency-Domain Analysis of Nonlinear Circuits Driven by Multi-Tone Signals
,”
IEEE Trans. Circuits Syst.
,
31
(
9
), pp.
766
779
.10.1109/TCS.1984.1085584
33.
Schilder
,
F.
,
Vogt
,
W.
,
Schreiber
,
S.
, and
Osinga
,
H. M.
,
2006
, “
Fourier Methods for Quasi-Periodic Oscillations
,”
Int. J. Numer. Methods Eng.
,
67
(
5
), pp.
629
671
.10.1002/nme.1632
34.
Sundararajan
,
P.
, and
Noah
,
S.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method Application to Rotor Systems
,”
ASME J. Vib. Acoust.
,
119
(
1
), pp.
9
20
.10.1115/1.2889694
35.
Aprille
,
T. J.
, and
Trick
,
T. N.
,
1972
, “
Steady-State Analysis of Nonlinear Circuits With Periodic Inputs
,”
Proc. IEEE
,
60
(
1
), pp.
108
114
.10.1109/PROC.1972.8563
36.
Guennoun
,
K.
,
Houssni
,
M.
, and
Belhaq
,
M.
,
2002
, “
Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
,”
Nonlinear Dyn.
,
27
(
3
), pp.
211
236
.10.1023/A:1014496917703
37.
Kim
,
Y.
, and
Choi
,
S.-K.
,
1997
, “
A Multiple Harmonic Balance Method for the Internal Resonant Vibration of a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
208
(
5
), pp.
745
761
.10.1006/jsvi.1997.1221
38.
Lau
,
S.
,
Cheung
,
Y.
, and
Wu
,
S.-Y.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
871
876
.10.1115/1.3167160
39.
Pušenjak
,
R.
, and
Oblak
,
M.
,
2004
, “
Incremental Harmonic Balance Method With Multiple Time Variables for Dynamical Systems With Cubic Non-Linearities
,”
Int. J. Numer. Methods Eng.
,
59
(
2
), pp.
255
292
.10.1002/nme.875
40.
Liu
,
G.
,
Lv
,
Z.
,
Liu
,
J.
, and
Chen
,
Y.
,
2018
, “
Quasi-Periodic Aeroelastic Response Analysis of an Airfoil With External Store by Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
100
, pp.
10
19
.10.1016/j.ijnonlinmec.2018.01.004
41.
Ju
,
R.
,
Fan
,
W.
,
Zhu
,
W.
, and
Huang
,
J.
,
2017
, “
A Modified Two-Timescale Incremental Harmonic Balance Method for Steady-State Quasi-Periodic Responses of Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051007
.10.1115/1.4036118
42.
Cameron
,
T.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
43.
Kim
,
Y.-B.
, and
Noah
,
S.
,
1996
, “
Quasi-Periodic Response and Stability Analysis for a Non-Linear Jeffcott Rotor
,”
J. Sound Vib.
,
190
(
2
), pp.
239
253
.10.1006/jsvi.1996.0059
44.
Legrand
,
M.
,
Roques
,
S.
,
Pierre
,
C.
,
Peseux
,
B.
, and
Cartraud
,
P.
,
2006
, “
n-Dimensional Harmonic Balance Method Extended to Non-Explicit Nonlinearities
,”
Eur. J. Comput. Mech.
,
15
(
1–3
), pp.
269
280
.10.3166/remn.15.269-280
45.
Legrand
,
M.
,
Pierre
,
C.
, and
Peseux
,
B.
,
2010
, “
Structural Modal Interaction of a Four Degree-of-Freedom Bladed Disk and Casing Model
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041013
.10.1115/1.4001903
46.
Guskov
,
M.
,
Sinou
,
J.-J.
, and
Thouverez
,
F.
,
2007
, “
Multi-Dimensional Harmonic Balance Applied to Rotor Dynamics
,”
ASME
Paper No. DETC2007-34792.10.1115/DETC2007-34792
47.
Guskov
,
M.
, and
Thouverez
,
F.
,
2012
, “
Harmonic Balance-Based Approach for Quasi-Periodic Motions and Stability Analysis
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031003
.10.1115/1.4005823
48.
Peletan
,
L.
,
Baguet
,
S.
,
Torkhani
,
M.
, and
Jacquet-Richardet
,
G.
,
2014
, “
Quasi-Periodic Harmonic Balance Method for Rubbing Self-Induced Vibrations in Rotor–Stator Dynamics
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2501
2515
.10.1007/s11071-014-1606-8
49.
Hou
,
L.
,
Chen
,
H.
,
Chen
,
Y.
,
Lu
,
K.
, and
Liu
,
Z.
,
2019
, “
Bifurcation and Stability Analysis of a Nonlinear Rotor System Subjected to Constant Excitation and Rub-Impact
,”
Mech. Syst. Signal Process.
,
125
, pp.
65
78
.10.1016/j.ymssp.2018.07.019
50.
Yuan
,
T.-C.
,
Yang
,
J.
, and
Chen
,
L.-Q.
,
2019
, “
A Harmonic Balance Approach With Alternating Frequency/Time Domain Progress for Piezoelectric Mechanical Systems
,”
Mech. Syst. Signal Process.
,
120
, pp.
274
289
.10.1016/j.ymssp.2018.10.022
51.
Chen
,
L.
,
Basu
,
B.
, and
Nielsen
,
S. R.
,
2019
, “
Nonlinear Periodic Response Analysis of Mooring Cables Using Harmonic Balance Method
,”
J. Sound Vib.
,
438
, pp.
402
418
.10.1016/j.jsv.2018.09.027
52.
Rook
,
T.
,
2002
, “
An Alternate Method to the Alternating Time-Frequency Method
,”
Nonlinear Dyn.
,
27
(
4
), pp.
327
339
.10.1023/A:1015238500024
53.
Krishna
,
I. P.
, and
Padmanabhan
,
C.
,
2011
, “
Improved Reduced Order Solution Techniques for Nonlinear Systems With Localized Nonlinearities
,”
Nonlinear Dyn.
,
63
(
4
), pp.
561
586
.10.1007/s11071-010-9820-5
54.
Praveen Krishna
,
I. R.
, and
Padmanabhan
,
C.
,
2018
, “
Experimental and Numerical Investigations on Rotor–Stator Rub
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
18
), pp.
3200
3212
.10.1177/0954406217735348
You do not currently have access to this content.