Abstract

A complete dynamic model of a timing belt drive system with an oval cogged pulley and an auto-tensioner is established in this work. Periodic torsional vibrations of all accessory pulleys and the tensioner arm are calculated using a modified incremental harmonic balance (MIHB) method based on the complete dynamic model. Calculated results from the MIHB method are verified by comparing them with those obtained from Runge–Kutta method. Influences of tensioner parameters and oval pulley parameters on torsional vibrations of camshafts and other accessory pulleys are investigated. A sequence quadratic programing (SQP) method with oval pulley parameters selected as design variables is applied to minimize the overall torsional vibration amplitude of all the accessory pulleys and the tensioner arm in the timing belt drive system at different operational speeds. It is demonstrated that torsional vibrations of the timing belt drive system are significantly reduced by matching belt stretch with speed variations of the crankshaft and fluctuating torque loads on camshafts. The timing belt drive system with optimal oval parameters given in this work has better performance in the overall torsional vibration of the system than that with oval parameters provided by the kinematic model and the simplified dynamic model in previous research.

References

1.
Carley
,
L.
,
2005
, “
Timing Chains, Gears & Belts
,” AA1Car Automotive Diagnostic Repair Help, Engine Builder Magazine, Akron, OH, accessed Sept. 5, 2017, http://www.aa1car.com/library/ar594.htm
2.
Di Sante
,
R.
,
Revel
,
G. M.
, and
Rossi
,
G. L.
,
2000
, “
Measurement Techniques for the Acoustic Analysis of Synchronous Belts
,”
Meas. Sci. Technol.
,
11
(
10
), pp.
1463
1472
.
3.
Novotný
,
P.
, and
Pištěk
,
V.
,
2009
, “
Virtual Prototype of Timing Chain Drive
,”
Eng. Mech.
,
16
(
2
), pp.
123
130
.http://dlib.lib.cas.cz/5308/
4.
Tokoro
,
H.
,
Nakamura
,
M.
,
Sugiura
,
N.
,
Tani
,
H.
,
Yamamoto
,
K.-I.
, and
Shuku
,
T.
,
1998
, “
Analysis of High Frequency Noise in Engine Timing Belt
,”
JSAE Rev.
,
19
(
1
), pp.
33
38
.
5.
Callegari
,
M.
, and
Cannella
,
F.
,
2001
, “
Lumped Parameter Model of Timing Belt Transmissions
,”
15th AIMETA Congress of Theoretical and Applied Mechanics
, Taormina, Italy, Sept., pp. 1–11.http://www.meccanicadellemacchine.it/old/uk/db/articoli/2001%20AIMETA%20Taormina%20(belts).pdf
6.
Sopouch
,
M.
,
Hellinger
,
W.
, and
Priebsch
,
H. H.
,
2003
, “
Prediction of Vibroacoustic Excitation Due to the Timing Chains of Reciprocating Engines
,”
Proc. Inst. Mech. Eng., Part K
,
217
(
3
), pp.
225
240
.
7.
Lacy
,
F.
,
2010
, “
Synchronous Belt Drive System
,” Gates Corporation, Denver, CO, U.S. Patent No.
7857720 B2
.http://www.google.co.in/patents/US7857720
8.
Fillipi
,
Z. S.
, and
Assanis
,
D. N.
,
2001
, “
A Nonlinear, Transient, Single-Cylinder Diesel Engine Simulation for Predictions of Instantaneous Engine Speed and Torque
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
951
959
.
9.
Popovic
,
S. J.
, and
Tomic
,
M. V.
,
2014
, “
Possibility to Identify Engine Combustion Model Parameters by Analysis of the Instantaneous Crankshaft Angular Speed
,”
Therm. Sci.
,
18
(
1
), pp.
97
112
.
10.
Zhu
,
H.
,
Hu
,
Y.
, and
Zhu
,
W. D.
,
2016
, “
Dynamic Response of a Front End Accessory Drive System and Parameter Optimization for Vibration Reduction Via a Genetic Algorithm
,”
J. Vib. Control
, epub.
11.
Parker
,
R. G.
,
2004
, “
Efficient Eigensolution, Dynamic Response, and Eigensentivity of Serpentine Belt Drives
,”
J. Sound Vib.
,
270
(
1
), pp.
15
38
.
12.
Nouri
,
M.
, and
Zu
,
J. W.
,
2002
, “
Dynamic Analysis and Optimization of Tensioner in Automotive Serpentine Belt Drive Systems
,”
ASME
Paper No. DETC2002/DAC-34120.
13.
Fujii
,
A.
,
Yonemoto
,
S.
,
Miyazaki
,
K.
,
Furumata
,
S.
,
Okuda
,
K.
, and
Miyazawa
,
H.
,
2002
, “
Analysis of the Accessory Belt Lateral Vibration in Automotive Engines
,”
JSAE Rev.
,
23
(
1
), pp.
41
47
.
14.
Moon
,
J.
, and
Wickert
,
J. A.
,
1999
, “
Radial Boundary Vibration of Misaligned V-Belt Drives
,”
J. Sound Vib.
,
225
(
3
), pp.
527
541
.
15.
Gao
,
Y.
,
2014
, “
Research on Vibration Characteristics of Large Scale Belt Conveyor and Its Application
,”
Appl. Mech. Mater.
,
686
(
1
), pp.
491
496
.
16.
Scurtu
,
P. R.
,
Clark
,
M.
, and
Zu
,
J. W.
,
2012
, “
Coupled Longitudinal and Transverse Vibration of Automotive Belts Under Longitudinal Excitations Using Analog Equation Method
,”
J. Vib. Control
,
18
(
9
), pp.
1336
1352
.
17.
Pellicano
,
F.
,
Catellani
,
G.
, and
Fregolent
,
A.
,
2004
, “
Parametric Instability of Belts: Theory and Experiments
,”
Comput. Struct.
,
82
(
1
), pp.
81
91
.
18.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2002
, “
Analysis of Belt-Drive Mechanics Using a Creep-Rate-Dependent Friction Law
,”
ASME J. Appl. Mech.
,
69
(
6
), pp.
763
771
.
19.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Responses of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
909
916
.
20.
Manin
,
L.
,
Michon
,
G.
,
Remond
,
D.
, and
Dufour
,
R.
,
2009
, “
From Transmission Error Measurement to Pulley–Belt Slip Determination in Serpentine Belt Drives: Influence of Tensioner and Belt Characteristics
,”
Mech. Mach. Theory
,
44
(
4
), pp.
813
821
.
21.
Ding
,
H.
, and
Zu
,
J. W.
,
2013
, “
Effect of One-Way Clutch on the Nonlinear Vibration of Belt-Drive System With a Continuous Belt Model
,”
J. Sound Vib.
,
332
(
24
), pp.
6472
6487
.
22.
Callegari
,
M.
,
Cannella
,
F.
, and
Ferri
,
G.
,
2003
, “
Multi-Body Modelling of Timing Belt Dynamics
,”
Proc. Inst. Mech. Eng. Part K
,
217
(
1
), pp.
63
75
.
23.
Sheng
,
G.
,
Zheng
,
H.
, and
Qatu
,
M.
,
2013
, “
Noise Modeling of Synchronous Belts
,”
Noise Vib. Worldwide
,
44
(
7
), pp.
14
27
.
24.
Čepon
,
G.
,
Manin
,
L.
, and
Boltežar
,
M.
,
2008
, “
Introduction of Damping Into the Flexible Multibody Belt-Drive Model: A Numerical and Experimental Investigation
,”
J. Sound Vib.
,
324
(
1–2
), pp.
283
296
.
25.
Childs
,
T. H. C.
,
Dalgarno
,
K. W.
,
Day
,
A. J.
, and
Moore
,
R. B.
,
1998
, “
Automotive Timing Belt Life Laws and a User Design Guide
,”
Proc. Inst. Mech. Eng. Part D
,
212
(
5
), pp.
409
419
.
26.
Tokoro
,
H.
,
Nakamura
,
M.
,
Sugiura
,
N.
,
Tani
,
H.
,
Yamamoto
,
K.
, and
Shuku
,
T.
,
1997
, “
Analysis of Transverse Vibration in Engine Timing Belt
,”
JSAE Rev.
,
18
(
1
), pp.
33
38
.
27.
Xue
,
B. Y.
,
2014
, “
Rotating Shuttle Delineating Bar Tacking Machine Synchronous Belt Transmission Device
,” Patent No.
CN102943352B
.http://google.com/patents/CN102943352B?cl=no
28.
Guo
,
J. H.
,
Jiang
,
H. Y.
,
Wu
,
Y. Z.
,
Chu
,
W. Y.
, and
Meng
,
Q. X.
,
2014
, “
Double Helical Synchronous Belt Transmission Design
,”
Mater. Sci. Forum
,
800–801
, pp.
672
677
.
29.
Yuan
,
J.
,
Parnell
,
R. D.
, and
Clarke
,
A.
,
2012
, “
Synchronous Belt Sprocket and System
,” Gates Corporation, Denver, CO, U.S. Patent No.
US20140106917 A1
.https://www.google.com/patents/US20140106917
30.
Cao
,
L. X.
, and
Liu
,
J.
,
2002
, “
Research on the Mapping Models and Designing Methods of Variable-Ratio Chain/Belt Drives
,”
Mech. Mach. Theory
,
37
(
9
), pp.
955
970
.
31.
Zheng
,
E.
,
Jia
,
F.
,
Sha
,
H.
, and
Wang
,
S.
,
2012
, “
Non-Circular Belt Transmission Design of Mechanical Press
,”
Mech. Mach. Theory
,
57
, pp.
126
138
.
32.
Kujawski
,
M.
, and
Krawiec
,
P.
,
2011
, “
Analysis of Generation Capabilities of Noncircular Cogbelt Pulleys on the Example of a Gear With an Elliptical Pitch Line
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051006
.
33.
Sopouch
,
M.
, and
Alameh
,
D.
, 2007, “
Simulation of a Timing Belt Drive Equipped With Oval Pulley Technology by Applying a Discrete Multi-Body Dynamic Approach
,”
VDI Berichte
,
1997
, pp.
103
120
.
34.
Stachel
,
H.
,
2009
, “
Gears and Belt Drives for Non-Uniform Transmission
,” The Second European Conference on Mechanism Science (
EUCOMES
), Cassino, Italy, Sept. 17–20, pp.
415
422
.
35.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2017
, “
Dynamic Analysis of an Automotive Belt-Drive System With a Noncircular Sprocket by a Modified Incremental Harmonic Balance Method
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011009
.
36.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2000
, Principles of Optimal Design: Modeling and Computation, Cambridge University Press, Cambridge, UK.
37.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden's Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
.
38.
Hwang
,
S-J.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Meckstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vib. Acoust.
,
116
(
1
), pp.
71
78
.
You do not currently have access to this content.