In this paper, a robust adaptive sliding mode controller is proposed. Under the existence of external disturbances, modified hybrid projective synchronization (MHPS) between two identical and two nonidentical fractional-order complex chaotic systems is achieved. It is shown that the response system could be synchronized with the drive system up to a nondiagonal scaling matrix. An adaptive controller and parameter update laws are investigated based on the Lyapunov stability theorem. The closed-loop stability conditions are derived based on the fractional-order Lyapunov function and Mittag-Leffler function. Finally, numerical simulations are given to verify the theoretical analysis.
Issue Section:
Research Papers
References
1.
Kiani-B
, A.
, Fallahi
, K.
, Pariz
, N.
, and Leung
, H.
, 2009
, “A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter
,” Commun. Nonlinear Sci. Numer. Simul.
, 14
(3
), pp. 863
–879
.2.
Wu
, X. J.
, Wang
, H.
, and Lu
, H. T.
, 2012
, “Modified Generalized Projective Synchronization of a New Fractional-Order Hyperchaotic System and Its Application to Secure Communication
,” Nonlinear Anal.: Real World Appl.
, 13
(3
), pp. 1441
–1450
.3.
Mahmoud
, G. M.
, Al-Kashif
, M. A.
, and Aly
, S. A.
, 2007
, “Basic Properties and Chaotic Synchronization of Complex Lorenz System
,” Int. J. Mod. Phys. C
, 18
(2
), pp. 253
–265
.4.
Mahmoud
, G. M.
, Ahmed
, M. E.
, and Mahmoud
, E. E.
, 2008
, “Analysis of Hyperchaotic Complex Lorenz Systems
,” Int. J. Mod. Phys. C
, 19
(10
), pp. 1477
–1499
.5.
Faieghi
, M. R.
, and Delavari
, H.
, 2012
, “Chaos in Fractional-Order Genesio–Tesi System and Its Synchronization
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(2
), pp. 731
–741
.6.
Li
, C. P.
, and Peng
, G. J.
, 2004
, “Chaos in Chen's System With a Fractional-Order
,” Chaos, Solitons Fractals
, 22
(2
), pp. 443
–450
.7.
Faieghi
, M. R.
, Delavari
, H.
, and Baleanu
, D.
, 2013
, “A Note on Stability of Sliding Mode Dynamics in Suppression of Fractional-Order Chaotic Systems
,” Comput. Math. Appl.
, 66
(5
), pp. 832
–837
.8.
Wang
, X. Y.
, and Wang
, M. J.
, 2007
, “Dynamic Analysis of the Fractional-Order Liu System and Its Synchronization
,” Chaos
, 17
(3
), p. 033106
.9.
Podlubny
, I.
, 1999
, Fractional Differential Equations
, Academic Press
, San Diego, CA
.10.
Petras
, I.
, 2011
, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
(Nonlinear Physical Science), Springer-Verlag
, Berlin
.11.
Bagley
, R. L.
, and Calico
, R. A.
, 1991
, “Fractional-Order State Equations for the Control of Viscoelastically Damped Structures
,” J. Guid. Control Dyn.
, 14
(2
), pp. 304
–311
.12.
Heaviside
, O.
, 1971
, Electromagnetic Theory
, Chelsea
, New York
.13.
Sun
, H.
, Abdelwahed
, A.
, and Onaral
, B.
, 1984
, “Linear Approximation of Transfer Function With a Pole of Fractional Power
,” IEEE Trans. Autom. Control
, 29
(5
), pp. 441
–444
.14.
Kunsezov
, D.
, Bulagc
, A.
, and Dang
, G. D.
, 1999
, “Quantum Levy Processes and Fractional Kinetics
,” Phys. Rev. Lett.
, 82
(6
), pp. 1136
–1139
.15.
Grigorenko
, I.
, and Grigorenko
, E.
, 2003
, “Chaotic Dynamics of the Fractional Lorenz System
,” Phys. Rev. Lett.
, 91
(3
), p. 034101
.16.
Yu
, Y.
, Li
, H. X.
, Wang
, S.
, and Yu
, J.
, 2009
, “Dynamic Analysis of a Fractional-Order Lorenz Chaotic System
,” Chaos, Solitons Fractals
, 42
(2
), pp. 1181
–1189
.17.
Lu
, J. G.
, and Chen
, G.
, 2006
, “A Note on the Fractional-Order Chen System
,” Chaos, Solitons Fractals
, 27
(3
), pp. 685
–688
.18.
Chen
, J. H.
, and Chen
, W. C.
, 2008
, “Chaotic Dynamics of the Fractionally Damped van der Pol Equation
,” Chaos, Solitons Fractals
, 35
(1
), pp. 188
–198
.19.
Sheu
, L. J.
, Tam
, L. M.
, Lao
, S. K.
, Kang
, Y.
, Lin
, K. T.
, Chen
, J. H.
, and Chen
, H. K.
, 2009
, “Parametric Analysis and Impulsive Synchronization of Fractional-Order Newton–Leipnik Systems
,” Int. J. Nonlinear Sci. Numer. Simul.
, 10
(1
), pp. 33
–44
.http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fijnsns.2009.10.1$002fijnsns.2009.10.1.33$002fijnsns.2009.10.1.33.pdf?t:ac=j$002fijnsns.2009.10.1$002fijnsns.2009.10.1.33$002fijnsns.2009.10.1.33.xml20.
Liu
, X. J.
, Hong
, L.
, and Yang
, L. X.
, 2014
, “Fractional-Order Complex T System: Bifurcations, Chaos Control and Synchronization
,” Nonlinear Dyn.
, 75
(3
), pp. 589
–602
.21.
Jiang
, C.
, Liu
, S.
, and Luo
, C.
, 2014
, “A New Fractional-Order Chaotic Complex System and Its Antisynchronization
,” Abstr. Appl. Anal.
, 2014
, p. 326354
.22.
Pecora
, L. M.
, and Carroll
, T. L.
, 1990
, “Synchronization in Chaotic Systems
,” Phys. Rev. Lett.
, 64
(8
), pp. 821
–824
.23.
Wang
, S.
, Yu
, Y. G.
, and Diao
, M.
, 2010
, “Hybrid Projective Synchronization of Chaotic Fractional-Order Systems With Different Dimensions
,” Phys. A
, 389
(21
), pp. 4981
–4988
.24.
Peng
, G. J.
, Jiang
, Y. L.
, and Chen
, F.
, 2008
, “Generalized Projective Synchronization of Fractional-Order Chaotic Systems
,” Phys. A
, 387
(14
), pp. 3738
–3746
.25.
Zhou
, P.
, and Zhu
, W.
, 2011
, “Function Projective Synchronization for Fractional-Order Chaotic Systems
,” Nonlinear Anal.: Real World Appl.
, 12
(2
), pp. 811
–816
.26.
Chen
, L. P.
, Chai
, Y.
, and Wu
, R. C.
, 2011
, “Lag Projective Synchronization in Fractional-Order Chaotic (Hyperchaotic) Systems
,” Phys. Lett. A
, 375
(21
), pp. 2099
–2110
.27.
Wang
, X. Y.
, and Zhang
, X. P.
, 2012
, “Modified Projective Synchronization of Fractional-Order Chaotic Systems Via Active Sliding Mode Control
,” Nonlinear Dyn.
, 69
(1–2
), pp. 511
–517
.28.
Mahmoud
, G. M.
, and Mahmoud
, E. E.
, 2013
, “Complex Modified Projective Synchronization of Two Chaotic Complex Nonlinear Systems
,” Nonlinear Dyn.
, 73
(4
), pp. 2231
–2240
.29.
Wei
, Q.
, Wang
, X. Y.
, Hu
, X. P.
, and Feng
, M. K.
, 2013
, “Adaptive Hybrid Complex Projective Synchronization of Chaotic Complex System
,” Trans. Inst. Meas. Control
, 36
(8
) pp. 1093
–1097
.30.
Zhang
, F. F.
, and Liu
, S.
, 2013
, “Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
,” ASME J. Comput. Nonlinear Dyn.
, 9
(2
), p. 021009
.31.
Liu
, P.
, 2015
, “Adaptive Hybrid Function Projective Synchronization of General Chaotic Complex Systems With Different Orders
,” ASME J. Comput. Nonlinear Dyn.
, 10
(2
), p. 021018
.32.
Sebastian
, K. S.
, and Sabir
, M.
, 2011
, “Adaptive Modified Function Projective Synchronization of Multiple Time-Delayed Chaotic Rössler System
,” Phys. Lett. A
, 375
(8
), pp. 1176
–1178
.33.
Luo
, C.
, and Wang
, X. Y.
, 2013
, “Hybrid Modified Function Projective Synchronization of Two Different Dimensional Complex Nonlinear Systems With Parameters Identification
,” J. Franklin Inst.
, 350
(9
), pp. 2646
–2663
.34.
Zhang
, K.
, Wang
, H.
, and Fang
, H.
, 2012
, “Feedback Control and Hybrid Projective Synchronization of a Fractional-Order Newton–Leipnik System
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(1
), pp. 317
–328
.35.
Faieghi
, M. R.
, Kuntanapreeda
, S.
, Delavari
, H.
, and Baleanu
, D.
, 2014
, “Robust Stabilization of Fractional-Order Chaotic Systems With Linear Controllers: LMI-Based Sufficient
,” J. Vib. Control
, 20
(7
), pp. 1042
–1051
.36.
Das
, S.
, Srivastava
, M.
, and Leung
, A. Y. T.
, 2013
, “Hybrid Phase Synchronization Between Identical and Non-Identical Three-Dimensional Chaotic Systems Using the Active Control Method
,” Nonlinear Dyn.
, 73
(4
), pp. 2261
–2272
.37.
Salarieh
, H.
, and Shahrokhi
, M.
, 2008
, “Adaptive Synchronization of Two Different Chaotic Systems With Time Varying Unknown Parameters
,” Chaos, Solitons Fractals
, 37
(1
), pp. 125
–136
.38.
Wu
, Z. Y.
, and Fu
, X. C.
, 2013
, “Combination Synchronization of Three Different Order Nonlinear Systems Using Active Back-Stepping Design
,” Nonlinear Dyn.
, 73
(3
), pp. 1863
–1872
.39.
Li
, C.
, Su
, K.
, and Wu
, L.
, 2012
, “Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System
,” ASME J. Comput. Nonlinear Dyn.
, 8
(3
), p. 031005
.40.
Mohadeszadeh
, M.
, and Delavari
, H.
, “Synchronization of Fractional-Order Hyper-Chaotic Systems Based on a New Adaptive Sliding Mode Control
,” Int. J. Dyn. Control
(published online).41.
Delavari
, H.
, Mohammadi Senejohnny
, D.
, and Baleanu
, D.
, 2012
, “Sliding Observer for Synchronization of Fractional Order Chaotic Systems With Mismatched Parameter
,” Cent. Eur. J. Phys.
, 10
(5
), pp. 1095
–1101
.http://www.degruyter.com/view/j/phys.2012.10.issue-5/s11534-012-0073-4/s11534-012-0073-4.xml42.
Chen
, J.
, Liu
, H.
, Lu
, J.
, and Zhang
, Q. J.
, 2011
, “Projective and Lag Synchronization of a Novel Hyperchaotic System Via Impulsive Control
,” Commun. Nonlinear Sci. Numer. Simul.
, 16
(4
), pp. 2033
–2040
.43.
Liu
, J.
, 2014
, “Complex Modified Hybrid Projective Synchronization of Different Dimensional Fractional-Order Complex Chaos and Real Hyperchaos
,” Entropy
, 16
(12
), pp. 6195
–6211
.44.
Diethelm
, K.
, Ford
, N. J.
, and Freed
, A. D.
, 2002
, “A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,” Nonlinear Dyn.
, 29
(1–4
), pp. 3
–22
.45.
Diethelm
, K.
, Ford
, N. J.
, and Freed
, A. D.
, 2004
, “Detailed Error Analysis for a Fractional Adams Method
,” Numer. Algorithms
, 36
(1
), pp. 31
–52
.46.
Delavari
, H.
, Baleanu
, D.
, and Sadati
, J.
, 2012
, “Stability Analysis of Caputo Fractional-Order Nonlinear Systems Revisited
,” Nonlinear Dyn.
, 67
(4
), pp. 2433
–2439
.47.
Utkin
, V. I.
, 1992
, Sliding Modes in Control Optimization
, Springer
, Berlin
.48.
Aguila-Camacho
, N.
, Duarte-Mermoud
, M. A.
, and Gallegos
, J. A.
, 2014
, “Lyapunov Functions for Fractional-Order Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(9
), pp. 2951
–2957
.Copyright © 2016 by ASME
You do not currently have access to this content.