In this paper, a robust adaptive sliding mode controller is proposed. Under the existence of external disturbances, modified hybrid projective synchronization (MHPS) between two identical and two nonidentical fractional-order complex chaotic systems is achieved. It is shown that the response system could be synchronized with the drive system up to a nondiagonal scaling matrix. An adaptive controller and parameter update laws are investigated based on the Lyapunov stability theorem. The closed-loop stability conditions are derived based on the fractional-order Lyapunov function and Mittag-Leffler function. Finally, numerical simulations are given to verify the theoretical analysis.

References

1.
Kiani-B
,
A.
,
Fallahi
,
K.
,
Pariz
,
N.
, and
Leung
,
H.
,
2009
, “
A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
3
), pp.
863
879
.
2.
Wu
,
X. J.
,
Wang
,
H.
, and
Lu
,
H. T.
,
2012
, “
Modified Generalized Projective Synchronization of a New Fractional-Order Hyperchaotic System and Its Application to Secure Communication
,”
Nonlinear Anal.: Real World Appl.
,
13
(
3
), pp.
1441
1450
.
3.
Mahmoud
,
G. M.
,
Al-Kashif
,
M. A.
, and
Aly
,
S. A.
,
2007
, “
Basic Properties and Chaotic Synchronization of Complex Lorenz System
,”
Int. J. Mod. Phys. C
,
18
(
2
), pp.
253
265
.
4.
Mahmoud
,
G. M.
,
Ahmed
,
M. E.
, and
Mahmoud
,
E. E.
,
2008
, “
Analysis of Hyperchaotic Complex Lorenz Systems
,”
Int. J. Mod. Phys. C
,
19
(
10
), pp.
1477
1499
.
5.
Faieghi
,
M. R.
, and
Delavari
,
H.
,
2012
, “
Chaos in Fractional-Order Genesio–Tesi System and Its Synchronization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
731
741
.
6.
Li
,
C. P.
, and
Peng
,
G. J.
,
2004
, “
Chaos in Chen's System With a Fractional-Order
,”
Chaos, Solitons Fractals
,
22
(
2
), pp.
443
450
.
7.
Faieghi
,
M. R.
,
Delavari
,
H.
, and
Baleanu
,
D.
,
2013
, “
A Note on Stability of Sliding Mode Dynamics in Suppression of Fractional-Order Chaotic Systems
,”
Comput. Math. Appl.
,
66
(
5
), pp.
832
837
.
8.
Wang
,
X. Y.
, and
Wang
,
M. J.
,
2007
, “
Dynamic Analysis of the Fractional-Order Liu System and Its Synchronization
,”
Chaos
,
17
(
3
), p.
033106
.
9.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
10.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
(Nonlinear Physical Science),
Springer-Verlag
,
Berlin
.
11.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional-Order State Equations for the Control of Viscoelastically Damped Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
304
311
.
12.
Heaviside
,
O.
,
1971
,
Electromagnetic Theory
,
Chelsea
,
New York
.
13.
Sun
,
H.
,
Abdelwahed
,
A.
, and
Onaral
,
B.
,
1984
, “
Linear Approximation of Transfer Function With a Pole of Fractional Power
,”
IEEE Trans. Autom. Control
,
29
(
5
), pp.
441
444
.
14.
Kunsezov
,
D.
,
Bulagc
,
A.
, and
Dang
,
G. D.
,
1999
, “
Quantum Levy Processes and Fractional Kinetics
,”
Phys. Rev. Lett.
,
82
(
6
), pp.
1136
1139
.
15.
Grigorenko
,
I.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.
16.
Yu
,
Y.
,
Li
,
H. X.
,
Wang
,
S.
, and
Yu
,
J.
,
2009
, “
Dynamic Analysis of a Fractional-Order Lorenz Chaotic System
,”
Chaos, Solitons Fractals
,
42
(
2
), pp.
1181
1189
.
17.
Lu
,
J. G.
, and
Chen
,
G.
,
2006
, “
A Note on the Fractional-Order Chen System
,”
Chaos, Solitons Fractals
,
27
(
3
), pp.
685
688
.
18.
Chen
,
J. H.
, and
Chen
,
W. C.
,
2008
, “
Chaotic Dynamics of the Fractionally Damped van der Pol Equation
,”
Chaos, Solitons Fractals
,
35
(
1
), pp.
188
198
.
19.
Sheu
,
L. J.
,
Tam
,
L. M.
,
Lao
,
S. K.
,
Kang
,
Y.
,
Lin
,
K. T.
,
Chen
,
J. H.
, and
Chen
,
H. K.
,
2009
, “
Parametric Analysis and Impulsive Synchronization of Fractional-Order Newton–Leipnik Systems
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
10
(
1
), pp.
33
44
.http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fijnsns.2009.10.1$002fijnsns.2009.10.1.33$002fijnsns.2009.10.1.33.pdf?t:ac=j$002fijnsns.2009.10.1$002fijnsns.2009.10.1.33$002fijnsns.2009.10.1.33.xml
20.
Liu
,
X. J.
,
Hong
,
L.
, and
Yang
,
L. X.
,
2014
, “
Fractional-Order Complex T System: Bifurcations, Chaos Control and Synchronization
,”
Nonlinear Dyn.
,
75
(
3
), pp.
589
602
.
21.
Jiang
,
C.
,
Liu
,
S.
, and
Luo
,
C.
,
2014
, “
A New Fractional-Order Chaotic Complex System and Its Antisynchronization
,”
Abstr. Appl. Anal.
,
2014
, p.
326354
.
22.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.
23.
Wang
,
S.
,
Yu
,
Y. G.
, and
Diao
,
M.
,
2010
, “
Hybrid Projective Synchronization of Chaotic Fractional-Order Systems With Different Dimensions
,”
Phys. A
,
389
(
21
), pp.
4981
4988
.
24.
Peng
,
G. J.
,
Jiang
,
Y. L.
, and
Chen
,
F.
,
2008
, “
Generalized Projective Synchronization of Fractional-Order Chaotic Systems
,”
Phys. A
,
387
(
14
), pp.
3738
3746
.
25.
Zhou
,
P.
, and
Zhu
,
W.
,
2011
, “
Function Projective Synchronization for Fractional-Order Chaotic Systems
,”
Nonlinear Anal.: Real World Appl.
,
12
(
2
), pp.
811
816
.
26.
Chen
,
L. P.
,
Chai
,
Y.
, and
Wu
,
R. C.
,
2011
, “
Lag Projective Synchronization in Fractional-Order Chaotic (Hyperchaotic) Systems
,”
Phys. Lett. A
,
375
(
21
), pp.
2099
2110
.
27.
Wang
,
X. Y.
, and
Zhang
,
X. P.
,
2012
, “
Modified Projective Synchronization of Fractional-Order Chaotic Systems Via Active Sliding Mode Control
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
511
517
.
28.
Mahmoud
,
G. M.
, and
Mahmoud
,
E. E.
,
2013
, “
Complex Modified Projective Synchronization of Two Chaotic Complex Nonlinear Systems
,”
Nonlinear Dyn.
,
73
(
4
), pp.
2231
2240
.
29.
Wei
,
Q.
,
Wang
,
X. Y.
,
Hu
,
X. P.
, and
Feng
,
M. K.
,
2013
, “
Adaptive Hybrid Complex Projective Synchronization of Chaotic Complex System
,”
Trans. Inst. Meas. Control
,
36
(
8
) pp.
1093
1097
.
30.
Zhang
,
F. F.
, and
Liu
,
S.
,
2013
, “
Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021009
.
31.
Liu
,
P.
,
2015
, “
Adaptive Hybrid Function Projective Synchronization of General Chaotic Complex Systems With Different Orders
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021018
.
32.
Sebastian
,
K. S.
, and
Sabir
,
M.
,
2011
, “
Adaptive Modified Function Projective Synchronization of Multiple Time-Delayed Chaotic Rössler System
,”
Phys. Lett. A
,
375
(
8
), pp.
1176
1178
.
33.
Luo
,
C.
, and
Wang
,
X. Y.
,
2013
, “
Hybrid Modified Function Projective Synchronization of Two Different Dimensional Complex Nonlinear Systems With Parameters Identification
,”
J. Franklin Inst.
,
350
(
9
), pp.
2646
2663
.
34.
Zhang
,
K.
,
Wang
,
H.
, and
Fang
,
H.
,
2012
, “
Feedback Control and Hybrid Projective Synchronization of a Fractional-Order Newton–Leipnik System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
1
), pp.
317
328
.
35.
Faieghi
,
M. R.
,
Kuntanapreeda
,
S.
,
Delavari
,
H.
, and
Baleanu
,
D.
,
2014
, “
Robust Stabilization of Fractional-Order Chaotic Systems With Linear Controllers: LMI-Based Sufficient
,”
J. Vib. Control
,
20
(
7
), pp.
1042
1051
.
36.
Das
,
S.
,
Srivastava
,
M.
, and
Leung
,
A. Y. T.
,
2013
, “
Hybrid Phase Synchronization Between Identical and Non-Identical Three-Dimensional Chaotic Systems Using the Active Control Method
,”
Nonlinear Dyn.
,
73
(
4
), pp.
2261
2272
.
37.
Salarieh
,
H.
, and
Shahrokhi
,
M.
,
2008
, “
Adaptive Synchronization of Two Different Chaotic Systems With Time Varying Unknown Parameters
,”
Chaos, Solitons Fractals
,
37
(
1
), pp.
125
136
.
38.
Wu
,
Z. Y.
, and
Fu
,
X. C.
,
2013
, “
Combination Synchronization of Three Different Order Nonlinear Systems Using Active Back-Stepping Design
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1863
1872
.
39.
Li
,
C.
,
Su
,
K.
, and
Wu
,
L.
,
2012
, “
Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031005
.
40.
Mohadeszadeh
,
M.
, and
Delavari
,
H.
, “
Synchronization of Fractional-Order Hyper-Chaotic Systems Based on a New Adaptive Sliding Mode Control
,”
Int. J. Dyn. Control
(published online).
41.
Delavari
,
H.
,
Mohammadi Senejohnny
,
D.
, and
Baleanu
,
D.
,
2012
, “
Sliding Observer for Synchronization of Fractional Order Chaotic Systems With Mismatched Parameter
,”
Cent. Eur. J. Phys.
,
10
(
5
), pp.
1095
1101
.http://www.degruyter.com/view/j/phys.2012.10.issue-5/s11534-012-0073-4/s11534-012-0073-4.xml
42.
Chen
,
J.
,
Liu
,
H.
,
Lu
,
J.
, and
Zhang
,
Q. J.
,
2011
, “
Projective and Lag Synchronization of a Novel Hyperchaotic System Via Impulsive Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
4
), pp.
2033
2040
.
43.
Liu
,
J.
,
2014
, “
Complex Modified Hybrid Projective Synchronization of Different Dimensional Fractional-Order Complex Chaos and Real Hyperchaos
,”
Entropy
,
16
(
12
), pp.
6195
6211
.
44.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1–4
), pp.
3
22
.
45.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
,
36
(
1
), pp.
31
52
.
46.
Delavari
,
H.
,
Baleanu
,
D.
, and
Sadati
,
J.
,
2012
, “
Stability Analysis of Caputo Fractional-Order Nonlinear Systems Revisited
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2433
2439
.
47.
Utkin
,
V. I.
,
1992
,
Sliding Modes in Control Optimization
,
Springer
,
Berlin
.
48.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional-Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
You do not currently have access to this content.