Abstract

The brain response to the explosion-induced primary blast waves is actively sought. Over the past decade, reasonable progress has been made in the fundamental understanding of blast traumatic brain injury (bTBI) using head surrogates and animal models. Yet, the current understanding of how blast waves interact with human is in nascent stages, primarily due to the lack of data in human. The biomechanical response in human is critically required to faithfully establish the connection to the aforementioned bTBI models. In this work, the biomechanical cascade of the brain under a primary blast has been elucidated using a detailed, full-body human model. The full-body model allowed us to holistically probe short- (<5 ms) and long-term (200 ms) brain responses. The full-body model has been extensively validated against impact loading in the past. We have further validated the head model against blast loading. We have also incorporated the structural anisotropy of the brain white matter. The blast wave transmission, and linear and rotational motion of the head were dominant pathways for the loading of the brain, and these loading paradigms generated distinct biomechanical fields within the brain. Blast transmission and linear motion of the head governed the volumetric response, whereas the rotational motion of the head governed the deviatoric response. Blast induced head rotation alone produced diffuse injury pattern in white matter fiber tracts. The biomechanical response under blast was comparable to the impact event. These insights will augment laboratory and clinical investigations of bTBI and help devise better blast mitigation strategies.

References

1.
Tanielian
,
T.
, and
Jaycox
,
L. H.
,
2008
,
Invisible Wounds of War
,
RAND Corporation
,
Santa Monica, CA
.
2.
Warden
,
D.
,
2006
, “
Military TBI During the Iraq and Afghanistan Wars
,”
J. Head Trauma Rehabil.
,
21
(
5
), pp.
398
402
.10.1097/00001199-200609000-00004
3.
Nyein
,
M. K.
,
Jason
,
A. M.
,
Yu
,
L.
,
Pita
,
C. M.
,
Joannopoulos
,
J. D.
,
Moore
,
D. F.
, and
Radovitzky
,
R. A.
,
2010
, “
In Silico Investigation of Intracranial Blast Mitigation With Relevance to Military Traumatic Brain Injury
,”
Proc. Natl. Acad. Sci.
,
107
(
48
), pp.
20703
20708
.10.1073/pnas.1014786107
4.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
5.
Taylor
,
P. A.
, and
Ford
,
C. C.
,
2009
, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061007
.10.1115/1.3118765
6.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
Vandevord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.10.1007/s10439-011-0343-0
7.
Garimella
,
H. T.
,
Kraft
,
R. H.
, and
Przekwas
,
A. J.
,
2018
, “
Do Blast Induced Skull Flexures Result in Axonal Deformation?
,”
PLoS One
,
13
(
3
), p.
e0190881
.10.1371/journal.pone.0190881
8.
Moss
,
W. C.
,
King
,
M. J.
, and
Blackman
,
E. G.
,
2009
, “
Skull Flexure From Blast Waves: A Mechanism for Brain Injury With Implications for Helmet Design
,”
Phys. Rev. Lett.
,
103
(
10
), p.
108702
.10.1103/PhysRevLett.103.108702
9.
Cernak
,
I.
,
Wang
,
Z. G.
,
Jiang
,
J. X.
,
Bian
,
X. W.
, and
Savic
,
J.
,
2001
, “
Ultrastructural and Functional Characteristics of Blast Injury-Induced Neurotrauma
,”
J. Trauma: Inj., Infect., Crit. Care
,
50
(
4
), pp.
695
706
.10.1097/00005373-200104000-00017
10.
Simard
,
J. M.
,
Pampori
,
A.
,
Keledjian
,
K.
,
Tosun
,
C.
,
Schwartzbauer
,
G.
,
Ivanova
,
S.
, and
Gerzanich
,
V.
,
2014
, “
Exposure of the Thorax to a Sublethal Blast Wave Causes a Hydrodynamic Pulse That Leads to Perivenular Inflammation in the Brain
,”
J. Neurotrauma
,
31
(
14
), pp.
1292
1304
.10.1089/neu.2013.3016
11.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.10.1007/s10439-012-0519-2
12.
Salzar
,
R. S.
,
Treichler
,
D.
,
Wardlaw
,
A.
,
Weiss
,
G.
, and
Goeller
,
J.
,
2017
, “
Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads
,”
J. Neurotrauma
,
34
(
8
), pp.
1589
1602
.10.1089/neu.2016.4600
13.
Yu
,
X.
,
Azor
,
A.
,
Sharp
,
D. J.
, and
Mazdak
,
G.
,
2020
, “
Mechanisms of Tensile Failure of Cerebrospinal Fluid in Blast Traumatic Brain Injury
,”
Extreme Mech. Lett.
,
38
, p.
100739
.10.1016/j.eml.2020.100739
14.
Goldstein
,
L. E.
,
Fisher
,
A. M.
,
Tagge
,
C. A.
,
Zhang
,
X.-L.
,
Velisek
,
L.
,
Sullivan
,
J. A.
,
Upreti
,
C.
,
Kracht
,
J. M.
,
Ericsson
,
M.
, and
Wojnarowicz
,
M. W.
,
2012
, “
Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model
,”
Sci. Transl. Med.
,
4
(
157
), p.
134ra160
.10.1126/scitranslmed.3004862
15.
Gullotti
,
D. M.
,
Beamer
,
M.
,
Panzer
,
M. B.
,
Chia Chen
,
Y.
,
Patel
,
T. P.
,
Yu
,
A.
,
Jaumard
,
N.
,
Winkelstein
,
B.
,
Bass
,
C. R.
,
Morrison
,
B.
, and
Meaney
,
D. F.
,
2014
, “
Significant Head Accelerations Can Influence Immediate Neurological Impairments in a Murine Model of Blast-Induced Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091004
.10.1115/1.4027873
16.
Fievisohn
,
E.
,
Bailey
,
Z.
,
Guettler
,
A.
, and
VandeVord
,
P.
,
2018
, “
Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
020806
.10.1115/1.4038710
17.
Meaney
,
D. F.
,
Morrison
,
B.
, and
Bass
,
C. D.
,
2014
, “
The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021008
.10.1115/1.4026364
18.
Ling
,
G.
,
Bandak
,
F.
,
Armonda
,
R.
,
Grant
,
G.
, and
Ecklund
,
J.
,
2009
, “
Explosive Blast Neurotrauma
,”
J. Neurotrauma
,
26
(
6
), pp.
815
825
.10.1089/neu.2007.0484
19.
Gayzik
,
F.
,
Moreno
,
D.
,
Geer
,
C.
,
Wuertzer
,
S.
,
Martin
,
R.
, and
Stitzel
,
J.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
20.
Gayzik
,
F. S.
,
Hamilton
,
C. A.
,
Tan
,
J. C.
,
McNally
,
C.
,
Duma
,
S. M.
,
Klinich
,
K. D.
, and
Stitzel
,
J. D.
,
2009
, “
A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development
,” SAE Paper No. 2009-01-2261. 10.4271/2009-01-2261
21.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Vavalle
,
N. A.
,
Rhyne
,
A. C.
, and
Stitzel
,
J. D.
,
2011
, “
Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Model
,”
Proceedings of the 39th International Workshop on Human Subjects for Biomechanical Research
,
Washington, DC
.https://wwwnrd.nhtsa.dot.gov/pdf/bio/proceedings/2011_39/39-12.pdf
22.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
Gill
,
A.
,
Jandir
,
G.
,
Singh
,
A.
, and
Yang
,
K. H.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.10.1115/1.4025101
23.
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2010
, “
Biomechanical Assessment of Brain Dynamic Responses Due to Blast Pressure Waves
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
490
504
.10.1007/s10439-009-9813-z
24.
Ganpule
,
S.
,
2013
, “
Mechanics of Blast Loading on Post-Mortem Human and Surrogate Heads in the Study of Traumatic Brain Injury (TBI) Using Experimental and Computational Approaches
,” Ph.D. dissertation,
University of Nebraska
Lincoln, Lincoln, NE
.
25.
Chafi
,
M. S.
,
Ganpule
,
S.
,
Gu
,
L.
, and
Chandra
,
N.
,
2011
, “
Dynamic Response of Brain Subjected to Blast Loadings: Influence of Frequency Ranges
,”
Int. J. Appl. Mech.
,
3
(
4
), pp.
803
823
.10.1142/S175882511100124X
26.
Ganpule
,
S.
,
Daphalapurkar
,
N. P.
,
Ramesh
,
K. T.
,
Knutsen
,
A. K.
,
Pham
,
D. L.
,
Bayly
,
P. V.
, and
Prince
,
J. L.
,
2017
, “
A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics
,”
J. Neurotrauma
,
34
(
13
), pp.
2154
2166
.10.1089/neu.2016.4744
27.
Giordano
,
C.
, and
Kleiven
,
S.
,
2014
, “
Evaluation of Axonal Strain as a Predictor for Mild Traumatic Brain Injuries Using Finite Element Modeling
,”
Stapp Car Crash J.
,
58
, p.
29
.10.4271/2014-22-0002
28.
Zhao
,
W.
, and
Ji
,
S.
,
2019
, “
White Matter Anisotropy for Impact Simulation and Response Sampling in Traumatic Brain Injury
,”
J. Neurotrauma
,
36
(
2
), pp.
250
263
.10.1089/neu.2018.5634
29.
Ji
,
S.
,
Zhao
,
W.
,
Ford
,
J. C.
,
Beckwith
,
J. G.
,
Bolander
,
R. P.
,
Greenwald
,
R. M.
,
Flashman
,
L. A.
,
Paulsen
,
K. D.
, and
McAllister
,
T. W.
,
2015
, “
Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion
,”
J. Neurotrauma
,
32
(
7
), pp.
441
454
.10.1089/neu.2013.3268
30.
Hyde
,
D.
,
2004
, “
ConWep 2.1.0.8 [Computer Software]
,”
US Army Engineer Research and Development Center
,
Vicksburg, MS
.
31.
LSTC
,
2017
, “
LS-DYNA Keyword Users Manual
,”
Livermore Software Technology Corporation
,
Livermore, CA
.
32.
Sutar
,
S.
, and
Ganpule
,
S.
,
2021
, “
Evaluation of Blast Simulation Methods for Modeling Blast Wave Interaction With Human Head
,”
ASME J. Biomech. Eng.
,
144
(
5
), p.
051009
.10.1115/1.4053059
33.
Kingery
,
C. N.
, and
Bulmash
,
G.
,
1984
, “
Air Blast Parameters From TNT Spherical Air Burst and Hemispherical Surface Burst
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, Report No. ARBRLTR-02555.
34.
Rafaels
,
K. A.
,
Cameron
,
R.
,
Panzer
,
M. B.
,
Salzar
,
R. S.
,
Woods
,
W. A.
,
Feldman
,
S. H.
,
Walilko
,
T.
,
Kent
,
R. W.
,
Capehart
,
B. P.
,
Foster
,
J. B.
,
Derkunt
,
B.
, and
Toman
,
A.
,
2012
, “
Brain Injury Risk From Primary Blast
,”
J. Trauma Acute Care Surg.
,
73
(
4
), pp.
895
901
.10.1097/TA.0b013e31825a760e
35.
Kamimori
,
G.
,
Reilly
,
L.
,
LaValle
,
C.
, and
Da Silva
,
U. O.
,
2017
, “
Occupational Overpressure Exposure of Breachers and Military Personnel
,”
Shock Waves
,
27
(
6
), pp.
837
847
.10.1007/s00193-017-0738-4
36.
Wiri
,
S.
, and
Needham
,
C.
,
2016
, “
Reconstruction of Improvised Explosive Device Blast Loading to Personnel in the Open
,”
Shock Waves
,
26
(
3
), pp.
279
286
.10.1007/s00193-016-0644-1
37.
Levine
,
J.
,
Dionne
,
J. P.
,
Bueley
,
D.
, and
Makris
,
A.
,
2014
, “
Blast and Impact Induced Linear and Rotational Head Acceleration
,”
Personal Armour Systems Symposium (PASS)
, Cambridge, UK.
38.
Skotak
,
M.
,
Alay
,
E.
,
Zheng
,
J. Q.
,
Halls
,
V.
, and
Chandra
,
N.
,
2018
, “
Effective Testing of Personal Protective Equipment in Blast Loading Conditions in Shock Tube: Comparison of Three Different Testing Locations
,”
PLoS One
,
13
(
6
), p.
e0198968
.10.1371/journal.pone.0198968
39.
Bir
,
C.
,
2011
, “
Measuring Blast-Related Intracranial Pressure Within the Human Head
,”
U.S. Army Medical Research and Materiel Command
, Final Report, Award No. W81XWH-09-1-0498.https://apps.dtic.mil/sti/pdfs/ADA547306.pdf
40.
Miller
,
L. E.
,
Urban
,
J. E.
, and
Stitzel
,
J. D.
,
2017
, “
Validation Performance Comparison for Finite Element Models of the Human Brain
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
12
), pp.
1273
1288
.10.1080/10255842.2017.1340462
41.
Foster
,
J. K.
,
Kortge
,
J. O.
, and
Wolanin
,
M. J.
,
1977
, “
Hybrid III—A Biomechanically-Based Crash Test Dummy
,” SAE Paper No. 770938. 10.4271/770938
42.
Yoganandan
,
N.
,
Nahum
,
A. M.
, and
Melvin
,
J. W.
,
2014
,
Accidental Injury: Biomechanics and Prevention
,
Springer
,
Berlin, Germany
.
43.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2013
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
511
531
.10.1007/s10237-012-0421-8
44.
Ganpule
,
S.
,
Salzar
,
R.
,
Perry
,
B.
, and
Chandra
,
N.
,
2016
, “
Role of Helmets in Blast Mitigation: Insights From Experiments on PMHS Surrogate
,”
Int. J. Exp. Comput. Biomech.
,
4
(
1
), pp.
13
31
.10.1504/IJECB.2016.081745
45.
Risling
,
M.
,
Plantman
,
S.
,
Angeria
,
M.
,
Rostami
,
E.
,
Bellander
,
B. M.
,
Kirkegaard
,
M.
,
Arborelius
,
U.
, and
Davidsson
,
J.
,
2011
, “
Mechanisms of Blast Induced Brain Injuries, Experimental Studies in Rats
,”
NeuroImage
,
54
(
Suppl. 1
), pp.
S89
S97
.10.1016/j.neuroimage.2010.05.031
46.
Aravind
,
A.
,
Kosty
,
J.
,
Chandra
,
N.
, and
Pfister
,
B. J.
,
2020
, “
Blast Exposure Predisposes the Brain to Increased Neurological Deficits in a Model of Blast Plus Blunt Traumatic Brain Injury
,”
Exp. Neurol.
,
332
, p.
113378
.10.1016/j.expneurol.2020.113378
47.
Hajiaghamemar
,
M.
,
Seidi
,
M.
, and
Margulies
,
S. S.
,
2020
, “
Head Rotational Kinematics, Tissue Deformations, and Their Relationships to the Acute Traumatic Axonal Injury
,”
ASME J. Biomech. Eng.
,
142
(
3
), p.
031006
.10.1115/1.4046393
48.
Hernandez
,
F.
, and
Camarillo
,
D. B.
,
2019
, “
Voluntary Head Rotational Velocity and Implications for Brain Injury Risk Metrics
,”
J. Neurotrauma
,
36
(
7
), pp.
1125
1135
.10.1089/neu.2016.4758
49.
Hernandez
,
F.
,
Shull
,
P. B.
, and
Camarillo
,
D. B.
,
2015
, “
Evaluation of a Laboratory Model of Human Head Impact Biomechanics
,”
J. Biomech.
,
48
(
12
), pp.
3469
3477
.10.1016/j.jbiomech.2015.05.034
50.
Hernandez
,
F.
,
Wu
,
L. C.
,
Yip
,
M. C.
,
Laksari
,
K.
,
Hoffman
,
A. R.
,
Lopez
,
J. R.
,
Grant
,
G. A.
,
Kleiven
,
S.
, and
Camarillo
,
D. B.
,
2015
, “
Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1918
1934
.10.1007/s10439-014-1212-4
51.
Ji
,
S.
,
Zhao
,
W.
,
Li
,
Z.
, and
McAllister
,
T. W.
,
2014
, “
Head Impact Accelerations for Brain Strain-Related Responses in Contact Sports: A Model-Based Investigation
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1121
1136
.10.1007/s10237-014-0562-z
52.
Patton
,
D. A.
,
McIntosh
,
A. S.
,
Kleiven
,
S.
, and
Frechede
,
B.
,
2012
, “
Injury Data From Unhelmeted Football Head Impacts Evaluated Against Critical Strain Tolerance Curves
,”
Proc. Inst. Mech. Eng., Part P
,
226
(
3–4
), pp.
177
184
.10.1177/1754337112438305
53.
Rowson
,
S.
,
Duma
,
S.
,
Beckwith
,
J.
,
Chu
,
J.
,
Greenwald
,
R.
,
Crisco
,
J.
,
Brolinson
,
P. G.
,
Duhaime
,
A.-C.
,
McAllister
,
T.
, and
Maerlender
,
A.
,
2012
, “
Rotational Head Kinematics in Football Impacts: An Injury Risk Function for Concussion
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
1
13
.10.1007/s10439-011-0392-4
54.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
226
236
.10.1115/1.1691446
55.
Nahum
,
A. M.
,
Smith
,
R.
, and
Ward
,
C. C.
,
1977
, “
Intracranial Pressure Dynamics During Head Impact
,” SAE Paper No. 770922. 10.4271/770922
56.
Hardy
,
W. N.
,
Mason
,
M. J.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
,
Bishop
,
J.
,
Bey
,
M.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2007
, “
A Study of the Response of the Human Cadaver Head to Impact
,”
Stapp Car Crash J.
,
51
, pp.
17
80
.10.4271/2007-22-0002
57.
Chen
,
Y.
, and
Ostoja-Starzewski
,
M.
,
2010
, “
MRI-Based Finite Element Modeling of Head Trauma: Spherically Focusing Shear Waves
,”
Acta Mech.
,
213
(
1–2
), pp.
155
167
.10.1007/s00707-009-0274-0
58.
Beckwith
,
J. G.
,
Zhao
,
W.
,
Ji
,
S.
,
Ajamil
,
A. G.
,
Bolander
,
R. P.
,
Chu
,
J. J.
,
McAllister
,
T. W.
, et al.,
2018
, “
Estimated Brain Tissue Response Following Impacts Associated With and Without Diagnosed Concussion
,”
Ann. Biomed. Eng.
,
46
(
6
), pp.
819
830
.10.1007/s10439-018-1999-5
59.
Zhang
,
L.
,
Makwana
,
R.
, and
Sharma
,
S.
,
2013
, “
Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet
,”
Front. Neurol.
,
4
, p.
88
.10.3389/fneur.2013.00088
60.
Abdul‐Wahab
,
R.
,
Long
,
M. T.
,
Ordaz
,
R.
,
Lyeth
,
B. G.
, and
Pfister
,
B. J.
,
2020
, “
Outcome Measures From Experimental Traumatic Brain Injury in Male Rats Vary With the Complete Temporal Biomechanical Profile of the Injury Event
,”
J. Neurosci. Res.
,
98
(
10
), pp.
2027
2044
.10.1002/jnr.24670
61.
Bar-Kochba
,
E.
,
Scimone
,
M. T.
,
Estrada
,
J. B.
, and
Franck
,
C.
,
2016
, “
Strain and Rate-Dependent Neuronal Injury in a 3D In Vitro Compression Model of Traumatic Brain Injury
,”
Sci. Rep.
,
6
(
1
), pp.
1
11
.10.1038/srep30550
62.
LaPlaca
,
M. C.
,
Cullen
,
D. K.
,
McLoughlin
,
J. J.
, and
Cargill
,
R. S.
, II
,
2005
, “
High Rate Shear Strain of Three-Dimensional Neural Cell Cultures: A New In Vitro Traumatic Brain Injury Model
,”
J. Biomech.
,
38
(
5
), pp.
1093
1105
.10.1016/j.jbiomech.2004.05.032
63.
Skotak
,
M.
,
Wang
,
F.
,
Alai
,
A.
,
Holmberg
,
A.
,
Harris
,
S.
,
Switzer
,
R. C.
, and
Chandra
,
N.
,
2013
, “
Rat Injury Model Under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures
,”
J. Neurotrauma
,
30
(
13
), pp.
1147
1160
.10.1089/neu.2012.2652
64.
Phipps
,
H.
,
Mondello
,
S.
,
Wilson
,
A.
,
Dittmer
,
T.
,
Rohde
,
N. N.
,
Schroeder
,
P. J.
,
Nichols
,
J.
,
McGirt
,
C.
,
Hoffman
,
J.
,
Tanksley
,
K.
,
Chohan
,
M.
,
Heiderman
,
A.
,
Abou Abbass
,
H.
,
Kobeissy
,
F.
, and
Hinds
,
S.
,
2020
, “
Characteristics and Impact of U.S. Military Blast-Related Mild Traumatic Brain Injury: A Systematic Review
,”
Front. Neurol.
,
11
, p.
559318
.10.3389/fneur.2020.559318
65.
Dennis
,
E. L.
,
Wilde
,
E. A.
,
Newsome
,
M. R.
,
Scheibel
,
R. S.
,
Troyanskaya
,
M.
,
Velez
,
C.
,
Wade
,
B. S.
,
Drennon
,
A. M.
,
York
,
G. E.
, and
Bigler
,
E. D.
, 2018, “
Enigma Military Brain Injury: A Coordinated Meta-Analysis of Diffusion MRI From Multiple Cohorts
,”
Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
,
Washington, DC
, Apr. 4–7, pp.
1386
1389
.10.1109/ISBI.2018.8363830
66.
Dretsch
,
M. N.
,
Kelly
,
M. P.
,
Coldren
,
R. L.
,
Parish
,
R. V.
, and
Russell
,
M. L.
,
2015
, “
No Significant Acute and Subacute Differences Between Blast and Blunt Concussions Across Multiple Neurocognitive Measures and Symptoms in Deployed Soldiers
,”
J. Neurotrauma
,
32
(
16
), pp.
1217
1222
.10.1089/neu.2014.3637
67.
Zhao
,
W.
, and
Ji
,
S.
,
2016
, “
Real-Time, Whole-Brain, Temporally Resolved Pressure Responses in Translational Head Impact
,”
Interface Focus
,
6
(
1
), p.
20150091
.10.1098/rsfs.2015.0091
68.
Ganpule
,
S.
,
Gu
,
L.
,
Alai
,
A.
, and
Chandra
,
N.
,
2012
, “
Role of Helmet in the Mechanics of Shock Wave Propagation Under Blast Loading Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1233
1244
.10.1080/10255842.2011.597353
69.
Sarvghad‐Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
Evaluation of Brain Tissue Responses Because of the Underwash Overpressure of Helmet and Faceshield Under Blast Loading
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
1
), p.
e02782
.10.1002/cnm.2782
70.
Li
,
J.
,
Ma
,
T.
,
Huang
,
C.
,
Huang
,
X.
,
Kang
,
Y.
,
Long
,
Z.
, and
Liu
,
M.
,
2020
, “
Protective Mechanism of Helmet Under Far-Field Shock Wave
,”
Int. J. Impact Eng.
,
143
, p.
103617
.10.1016/j.ijimpeng.2020.103617
71.
Mott
,
D. R.
,
Schwer
,
D. A.
,
Young
,
T. R.
,
Levine
,
J.
,
Dionne
,
J. P.
,
Makris
,
A.
, and
Hubler
,
G.
,
2008
, “
Blast-Induced Pressure Fields Beneath a Military Helmet
,”
Proceedings of the 20th International Symposium on Military Aspects of Blast and Shock
,
Oslo, Norway
, Sept. 1–5.https://ui.adsabs.harvard.edu/abs/2008APS..DFD.MF008M/abstract
72.
Singh
,
D.
, and
Cronin
,
D.
,
2017
, “
Efficacy of Visor and Helmet for Blast Protection Assessed Using a Computational Head Model
,”
Shock Waves
,
27
(
6
), pp.
905
918
.10.1007/s00193-017-0732-x
73.
Yu
,
X.
, and
Ghajari
,
M.
,
2022
, “
Protective Performance of Helmets and Goggles in Mitigating Brain Biomechanical Response to Primary Blast Exposure
,”
Ann. Biomed. Eng.
,
50
(
11
), pp.
1579
1595
.10.1007/s10439-022-02936-x
74.
Tan
,
X.
,
Przekwas
,
A.
, and
Gupta
,
R.
,
2017
, “
Computational Modeling of Blast Wave Interaction With a Human Body and Assessment of Traumatic Brain Injury
,”
Shock Waves
,
27
(
6
), pp.
889
904
.10.1007/s00193-017-0740-x
75.
Wang
,
Y.
,
Wang
,
H.
,
Cui
,
C.
, and
Zhao
,
B.
,
2019
, “
Investigating Different Grounds Effects on Shock Wave Propagation Resulting From Near-Ground Explosion
,”
Appl. Sci.
,
9
(
17
), p.
3639
.10.3390/app9173639
76.
Singh
,
D.
,
Cronin
,
D. S.
, and
Haladuick
,
T. N.
,
2014
, “
Head and Brain Response to Blast Using Sagittal and Transverse Finite Element Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
4
), pp.
470
489
.10.1002/cnm.2612
77.
Lockhart
,
P. A.
,
2010
, “
Primary Blast Injury of the Head: Numerical Prediction and Evaluation of Protection
,” M.S. thesis,
University of Waterloo
,
Waterloo, ON, Canada
.
You do not currently have access to this content.